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Abstract

The objective of this thesis was to analyze stochastic

binary networks for the purpose of improving their perfor-

mance as measured by expected maximum flow and source-to-sink

reliability. The capaclty and survivability of the networks'

nodes and arcs formed the parameters of interest in the

experimental design used to develop a response surface model.

Estimates of network performance was provided by Monte Carlo

simulation using a FORTRAN based program designed for this

study called MAXPLO. MAXFLO implemented an original form of

maximum flow calculation using minimal cuts instead of paths

to improve the simulation's speed. MAXFLO was also compiled

and run on a VAX 8650, VAX 11/785, and SUN-3 workstation

under UNIX and VMS systems to insure portability and simula-

tion performance. ',; .. .. 0 .,, i - r

Additional research investigated the use of a scalar

internal control variate to reduce the variance of the
/

maximum flow estimates. Specifically, the effect of the

number of failed nodes of a selected control subset was

regressed out of the simulation response to reduce the /

variance as much as 24%. This feature was incorporated in

MAXFLO as a user option for any network. The,-fesults

indicated further variance reduction may, be realized by
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expanding to a multivariate set of controls that includes

both nodes and arcs.

Finally, response surface methodology was implemented

to provide an efficient analysis of stochastic network

performance. Nineteen parameters of particular interest in

a specific network were screened using a Plackett-Burman

design, resulting in five parameters of significant influ-

ence. A full 28 factorial orthogonal design was developed,

with two first-order polynomials approximating the response

surfaces of expected maximum flow and network reliability

regressed from the experimental results. In addition to the

descriptive insight provided by the response surfaces, a

prescriptive example of an optimized network improvement

strategy was developed by incorporating the response surface

equations in a linear programming formulation. Additionally,

a correlation of response surface coefficients and control

variate effectiveness was empirically shown, suggesting

promising future research in this area.
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RESPONSE SURFACE ANALYSIS OF
STOCHASTIC NETWORK PERFORMANCE

I. Introduction

This thesis' objective is to improve the analysis of

stochastic networks. It accomplishes this task by developing

an efficient Monte Carlo simulation program, using the

variance and bias reduction techniques of control variates

and antithetic random numbers, and introducing the technique

of response surface methodology (RSM) to the simulation

output analysis. The immediate application of this study is

limited to analyzing Department of Defense (DOD) communi-

cation networks. However, the theoretic aspects of the

research can be expanded to networks and simulation in

general (Bauer, 1988a).

Background (Marsh and Knue, 1988)

One current area of stochastic network research is reli-

ability and performance improvement. The stochastic nature

of the problem makes finding a solution difficult because for

each network there exists, as a function of its individual

components' probability of survival, an exponentially large

number of possible network configurations or subsets, with

each subset having a different flow pattern. Further

compounding the problem is the lack of independence of
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survival probabilities of certain components. Consequently,

a complete enumeration and subsequent maximum flow calcula-

tion of all possible network configurations is impractical.

Therefore, Monte Carlo simulation is a popular method of

analyzing network effectiveness, with the estimated expected

maximum flow as the measure of performance. Specifically,

current techniques embed a maximum flow algorithm in a Monte

Carlo routine for a defined number of replications, or sample

size. In each sample, all stochastic components are indi-

vidually evaluated according to their probability of survival

(P,) and a separate, independent random number draw from a

uniform distribution U(O,1). If the random draw is higher

than P., then that component is "destroyed" in the current

sample's maximum flow evaluation. In the rourse of the

simulation, those subsets of the original network most likely

to survive are evaluated, thus producing an unbiased estimate

of the expected maximum flow and variance.

The purpose of the simulation analysis is to find those

components whose increase in capacity or survivability will

most improve the network's performance as expressed in terms

of expected maximum flow. One obvious procedure to accom-

plish this task is to run several simulations of a particular

network, each time changing a parameter selected by the

analyst either for its potential in improving network

performance, or simply because it can realistically be

improved. Unfortunately, the large number of components in
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most networks make this approach a time-intensive procedure.

They not only increase the number of factors available for

analysis, but increase the computational burden as well.

Furthermore, any re-e' -luation of a network due to changes in

the survival rates of any node or arc further adds to the

workload.

Organization of Research

The objective of this thesis is to improve the present

analysis of stochastic networks by introducing a more

efficient Monte Carlo simulation procedure, variance and bias

reduction techniques, and response surface methodology (RSM).

Accomplishing this task requires more than an efficient

rewrite of current simulation programs, however. It also

requires original research into stochastic network perfor-

mance as it relates to variance and bias reduction, and RSM.

This research is conducted in two major areas.

Simulation. The current simulation technique is to

embed a standard path-augmenting maximal flow algorithm in a

simple Monte Carlo simulation with sample sizes up to

100,000. (Marsh, 1988). The thesis offers a new simulation

code using the same Monte Carlo technique but with two

specific improvements. First, a unique maximal flow algo-

rithm using minimal cuts instead of augmented paths attempts

to reduce the time of calculation for each sample. Second,

variance reduction using internal control variates and
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antithetic random numbers tries to reduce the number of

replications required for a given confidence interval as well

as lessen its bias. As the next chapter points out, there

are no published experimental results of either technique.

Yet, if either technique is successful, an improvement in

simulation efficiency will be realized. The final code

incorporates the successful techniques.

Additionally, the code is designed for portability. In

other words, it should run on any computer with a ANSI-

standard FORTRAN 77 compiler to the extent that such port-

ability can actually be achieved. This is particularly

important due to the number of different machines DOD has to

run the program. Because writing the required interface with

another program that determines the network component

survivability is beyond the scope of this thesis, the code

for this study will only provide a rudimentary interface for

manual parameter input and simulation output. FORTRAN 77 is

selected as the programming language because of its wide-

spread availability (Marsh; 1988b).

Response Surface Methodology. This second aspect of the

thesis is perhaps its most promising feature. Following the

techniques of RSM as described by Box and Draper (1987), a

well designed experiment of simulation output and the

resulting response surface equation offers the following

advantages:

1. The functional relationship of the network com-
ponents to the maximum flow is described in a
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first- or second-order polynomial equation.
Furthermore, the metamodel's coefficients are a
direct measure of the expected maximum flow's
sensitivity to changes in network parameters.

2. A well screened model finds all significant rela-
tionships between network components and the
expected maximum flow, including any interactions.

3. Once the response surface model is found, it is no
longer necessary to run the simulation model. This
is an important feature if the original network
model is large or if repeated analysis of the
network is expected.

4. The response surface model not only supports
network optimization, but provides a clear alge-
braic or graphic description of the network's flow
and how individual components contribute to its
performance.

5. The resulting polynomial equation is easily
incorporated in other models for further analysis
or optimization (e.g. cost minimization, spread-
sheet).

Thesis Objectives

In order to provide a more efficient method of analyzing

the improvement of stochastic network performance, this

thesis considers the following topics:

1. Why a minimal cut-set based algorithm would be more
efficient than the standard path-augmenting
algorithm in finding maximal flow and network
reliability within the context of Monte Carlo
simulation.

2. Does a simple function of the arcs or nodes exist
such that it could be used as an internal control
variate?

3. What insight does RSM offer for stochastic network

performance and sensitivity?

Chapter II formally defines network and simulation termin-

ology and concepts, and reviews current research in these
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areas. Chapter III describes in greater detail the new

simulation program, and how experimental design and RSM will

be implemented. Chapter IV gives the results of the research

questions listed above. Chapter V summarizes the thesis and

offers suggestions for further research.
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Il. Literature Review

The literature review covers the two principal areas of

research interest - network reliability and maximal flow, and

the simulation topics of experimental design and variance

reduction.

Networks

Definition. Network modelling Is a subset of a field of

study referred to in the literature as graph theory, of which

several disciplines, including operations research, applied

and theoretical mathematics, and electrical engineering, all

share an active interest and conduct ongoing research. There

is an overwhelming choice of references in the literature to

use for definitions, but most of those in the field of

operations research refer to a seminal work by Ford and

Fulkerson called Flows In Networks (1962). This thesis also

uses their work as Its principal reference, with additional

descriptions and definitions provided by Chachra and others

(1979).

One additional point about these definitions needs to be

made. The literature is occasionally inconsistent in distin-

guishing the terminology used for networks and graphs.

Chachra's introduction and summary of definitions is excel-

lent in this regard; thus, Its choice as a reference.

However, some of his terms used by this thesis are, by strict
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definition, for graphs. But because the distinguishing

feature of networks, directed edges, doesn't change the

essential concept of the following definitions, this study

adapts his terms for use in the network context.

A graph G = (V,E) is defined as the set of points V, or

vertices, connected by the set of vertex pairs E, or edges

(Chachra and others, 1979:40). This definition is refined by

Ford and Fulkerson to describe the condition where the edges

E acquire a specific orientation or direction. In that case

G becomes (N,A), a directed linear graph or network, where

the set N, or nodes, are connected by directed edges A, or

arcs. Furthermore, each node N1 and arc A, in G can have a

non-negative, real number associated with it representing

maximum steady-state flow capacity per unit time (1962:2-4).

Returning to Chachra, adjacent arcs are two arcs with

one node in common, while adjacent nodes are two nodes

connected by one arc. The number of adjoining arcs of a node

is the degree of that node. If an arc is incident with only

one node (i.e. it starts and ends at the same node), it is

called a loop. If two arcs share the same nodes at both

endpoints and have the same direction, they are strJctly

parallel arcs.

In any network, an arc sequence is a bounded series of

adjacent arcs from node N. to node N., in the direction of No

to N., which can contain a non-distinct subset of nodes N,.
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If all arcs in an arc sequence are distinct or unique, then

that sequence Is called a path, and if all nodes N in the

path are distinct the path is called a simple path. By

contrast, if nodes N. and N, of a path are equal, then the

path is referred to as a closed path or cycle.

If a network contains no cycles, it is called an acyclic

network. A network that contains neither loops or parallel

arcs is a simple, directed network. A planar network is one

that can be set in a 2 dimensional plane such that all arcs

cross only at the nodes. A connected graph, or network,

exists if every pair of nodes is connected by a simple path.

A subgraph, or subnetwork G,, is a graph or network com-

pletely contained in G (1979:Ch 1).

Finally, Ford and Fulkerson cover the concepts of source

and sink nodes. For any two distinct nodes S and T, if the

static flow from S equals the flow into T, and for all

intermediate nodes the static flow in equals the static flow

out, then S is referred to as the source node and T the sink

node (1962:4). For this thesis, however, a more narrow

definition is used. In all networks, the source node S is

defined as a node whose adjacent arcs are oriented such that

all flow moves away from it, and a sink node T where its

adjacent arcs direct all flow into it.

Additionally, a network may also contain multiple source

nodes S or sink nodes T, or both (Ford and Fulkerson, 1962:1-
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5). Accordingly, this study will allow for any combination

of single or multiple source and sink nodes in networks with

single commodity flow. Furthermore, the networks in this

thesis are restricted to simple, acyclic, directed networks,

can contain capacitated nodes, and can be non-planar. (The

above definitions cover the major concepts of network theory

necessary to understanding this thesis' efforts. However,

they constitute just a few of the terms used in the field.

For further detailed explanations, the reader is directed to

Jensen and Barnes (1980), and Harary (1972) in addition to

the references cited above.)

Maximal Flow. Given the above definitions, the current

measure of network performance is the maximal flow from S to

T in the network G. The current method used in the Monte

Carlo simulation (Marsh, 1988), the labeling algorithm, is

the same one suggested by Ford and Fulkerson. A widely

implemented routine, it is considered more efficient than an

equivalent linear programming formulation (Hillier and

Lieberman, 1986:305). From Ford and Fulkerson, the algorithm

works as follows.

Two routines are used; the first one, Routine A, incor-

porates a labeling process while the second procedure,

Routine B, handles the change in flow. Routine A essentially

searches for a flow augmenting path from S to T, carrying

enough information with It through Its labeling process that
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if it finds an unlabeled path from S to T, Routine B incre-

ments the flow amount accordingly, then modifies the labels

before returning to Routine A for another path search. If

Routine A falls to find another S-T path, then the current

flow from Routine B is the maximal flow (1962:17-22). Because

of its popularity, there are many additional descriptions and

computer implementations of the labeling algorithm. Further

information and refinements are offered by Chachra and

others, (1979:122-129), Jensen and Barnes (1980:154-164),

Nijenhuls and Wilf (1975:148-151). and Hillier and Lieberman

(1986:304-310).

There is an alternative method of finding the maximal

S-T flow of G, Lowever, that uses cuts instead of paths. Ford

and Fulkerson define any collection of arcs in (N,A) that

separates S from T as a disconnecting set D. D is a proper

disconnecting set if none of its proper subsets are them-

selves disconnecting sets. If this is the case, D Is also a

cut, and the capacity of cut D is the summation of the flow

capacities of its component arcs. Then, using the concept of

disconnecting sets, the max-flow mln-cut theorem states: "For

any network the maximal flow value from a to t is equal to

the minimal cut capacity of all cuts separating s and t."

(1962:10-15).

Before pursuing max-flow min-cut theorem any further,

the concept and terminology of cuts needs to be clarified.
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j X2

Figure 2-1. Example Lexicographical Network

The literature is somewhat Inconsistent, which leads to

misunderstanding cuts and the application of the max-flow

min-cut theorem. Therefore, the following explanation, with

reference to Figure 2-1, attempts to clarify this issue.

From the network shown above, the set of arcs A is

(X 1,XzX 3 ,X,,X). Using Ford and Fulkerson's terminology,

out of 31 (26 - 1) possible arc combinations, 14 form discon-

necting sets. However, the total number of proper discon-

necting sets is only 4; (X1 .X.), (X.,X.), (X.,X,), and

(X±,X3,X4 ). In other words, each of these four proper

disconnecting sets are contained within at least one of the
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14 disconnecting sets, and no subset of any one of the four

exists that still disconnects S and T. For instance, if any

arc from the proper disconnecting set (X,,X,,X,) is removed,

a path between S and T becomes feasible. Also note that the

proper disconnecting set (X,,X,,X,) is a subset of discon-

necting sets (X,X,,X3,X,). (X2 &X3 PX1.X 8 ), and (X,,X,,X3 ,X,,X).

Finally, the cut capacity of (X,,X,,X,), where CN is the

capacity of arc X,, is C, + C, + C,.

When referring to cuts, this thesis will use the terms

given by Bellmore and Jensen. They refer to any discon-

necting set as a cut, and any proper disconnecting set as a

proper cut. For the Interested reader, they also provide a

slightly different explanation of proper cuts from the

standpoint of graph subsets (1970:777) that is equivalent to

Ford and Fulkerson's definition.

Continuing with maximum flow calculations, Ford and

Fulkerson state that either cuts (disconnecting sets) or

proper cuts (proper disconnecting sets) can be used as a

"cut" in the max-flow min-cut algorithm (1962:15). Since the

number of proper cuts can never be greater than cuts (Bell-

more and Jensen, 1970:777), a better tactic is to use proper

cuts. Therefore, instead of using the labeling algorithm or

a linear programming formulation, this thesis will inves-

tigate the idea of generating all proper cuts, or the proper
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cutset, to calculate maximal flow using Ford and Fulkerson's

max-flow mn-cut theorem.

Pathsets vs. Cutsets. Using the proper cutset in the

context of communication network reliability is discussed in

detail by Bellmore and Jensen; in particular, one point

especially pertinent to this study is covered. Specifically,

it is how can one determine from a graph or network G which

approach is more efficient - enumerating all simple paths

necessary to run the labeling algorithm, or finding all

proper cuts in order to use the max-flow mmn-cut algorithm.

One answer is that, for networks having a single source and

a single sink, where N represents the number of nodes and M

Is the number of arcs in G, the number of simple paths is

bounded by 2*- 4 and the number of proper cuts bounded by

2'. Therefore, enumerating the proper cutsets can a better

approach if 2"-
2 5 2" -  (1970:778).

Based on this formula, it would initially appear that

for sparse networks, pathset enumeration Is a more practical

solution. For example, a network containing 20 nodes and 30

arcs would have an upper bound on the number of simple paths

of 200- 20'" , or 2048, whereas the upper bound on the number

of proper cuts is 230-*, or 268,435,456. However, there are

two points that argue in favor of the proper cutset approach.

First, these are upper bounds on the number of simple

paths or proper cuts; in theory the proper cutset could be
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closer in number to the simple paths. Second, and most

importantly, the relative merits of paths versus cuts dis-

cussed in the literature is usually in the context of an

analytic methodology. Instead, the author contends that a

proper cutset, even one significantly larger than its simple

path counterpart, can be implemented more efficiently in a

Monte Carlo simulation than the Ford-Fulkerson labeling

algorithm. This idea, and Its implementation, will be more

fully explained in Chapter III.

Another reason to consider cutsets is when a multiple

source or multiple sink node network is modeled. As Figure

2-2 below shows, the degree of the network no longer predicts

the number of cuts with respect to the paths. For instance,

,5

Fig. 2-2. Multi-Terminal Network
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in this example there are 9 possible paths: (X,,X4 ), (X,,X8 ),

(X1 .X.), (X2 ,X.), (X,,Xb), (X2,X*), (X3 ,X4 ), (X,,X,), and

(X,,X,). Yet, there are only 2 cuts: (X,,X.,X.) and

(X,,X,X,). Clearly, in this situation, using the cutset for

maximum flow calculations is easier.

Furthermore, adding additional source or sink nodes will

increase the number of paths multiple times, but not add to

the cutset. For example, adding a fourth source node with an

arc (X7 ) straight from it to the intermediate node 4 will not

increase the number of cuts; X., is merely added to the first

cut. As for paths, however, adding X, increases the number

of paths to 12 (4 x 3).

Conversely, if the eighth node is added as an inter-

mediary node, then the number of cuts increases while the

number of paths remain the same. For instance, assume a node

No. 8 were inserted between nodes 1 and 4, with arc X.

connecting nodes 1 and 8, and a new arc, X. connecting node&

8 and 4. The additional arc X. would become part of the

existing path from node 1 to node 4, but the number of cuts

would increase to 3: (X,,X,,X,), (X,,X,,X,), and (X,,X,,X,).

Further additions of intermediary nodes in this fashion would

then increase the number of nodes exponentially.

The placement of the nodes is important because the

networks modeled in this thesis resemble the basic topology

in Figure 2-2. Generally, there are fewer intermediary nodes
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of the type just discussed, which further encourages the idea

of using proper cuts instead of paths in the min-cut max-flow

algorithm. However, the algorithm this study uses is

sensitive to the number of intermediary nodes; thus, in

certain situations the labeling algorithm may be a better

choice. A procedure for making this choice is a good topic

for further research.

Stochastic Networks. As In the case of network defini-

tions, the terminology in the literature concerning stochas-

tic networks is inconsistent. Therefore a brief summary of

modeling efforts and definitions of stochastic network terms

is offered.

A stochastic activity network represents networks used

for management scheduling of large projects where the

completion times are stochastic (Bauer and others, 1988b:I).

Research in this area on estimating path and arc probabili-

ties has been done by Fishman (1985), and on variance

reduction by Fishman (1983b), Bauer and others (1988b), and

Burt and Garman (1971). However, the current effort concerns

maximal flow and network reliability, rendering this area of

network research less relevant.

The probabilistic network more applicable to this thesis

is a stochastic binary network (SBS). Ball defines an SBS to

be "a system that fails randomly as a function of the random

failure of its components... (where) each component may take
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on either of two states: operative or failed and that the

states of any two components are independent" (1980:154).

Furthermore, he defines a stochastic coherent binary network

(SCBS) as one where the pathset defines the minimal subset

required for system operation and the cutset defines the

minimal subset required for failure (1980:154). The networks

this thesis addresses fit Ball's definition with one excep-

tion: component failure is not necessarily independent.

However, failure dependencies among network components is

easily implemented in a Monte Carlo simulation, so this

caveat is trivial.

Before proceeding, two points need to be made. First,

a closely related aspect to SCBS networks is the concept of

reliability. Terms used to describe this concept varies in

the literature, with terminal reliability and S-T connected-

ness among the more popular versions. Although they essen-

tially mean the same thing, this thesis will use the term

reliability to mean the probability of at least one path

connecting S and T in a SCBS, or alternatively as the prob-

ability of all components of the cutset failing (Bellmore and

Jensen, 1970:778).

The second point is that, given the above definition of

reliability, the SCBS formulation provides a splendid

complement to the max-flow min-cut theorem. The key feature

is that the network cutset can be used to estimate both
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network reliability and maximal flow In the same simulation.

Furthermore, as Chapter III shows, the computational cost of

adding a reliability estimator to the max flow estimator is

almost trivial.

At this point the distinction between SBS and SCBS

formulations and another class of stochastic networks best

described by the author as randomly-capacitated networks

(RCN) needs to be made. In an RCN, arc capacity varies over

a range of values as a continuous function of a probability

distribution. Arc capacity in a SBS/SCBS network, by

contrast, is based solely on the binary (operative-failed)

status of the arc; if the arc is operative, there is only one

arc capacity. The networks investigated by this study are

not part of the RCN category of stochastic networks - they

belong In the SCBS class. RCN systems are mentioned because

much research has been devoted to them, and it's important to

understand the difference between the two models. For

further explanation or research results in this class of

networks, see Fishman (1987a), Somers (1982), and Evans

(1976).

In either RCN or SCBS structures, the difficulty of

assessing network reliability in an analytical form is well

known. Ball summarizes the computational difficulty of such

calculations, proving that most network reliability issues

fall in the class of NP-hard combinatorial problems; i.e., no
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polynomial bounded algorithm exists (1980). Progress in the

area of network reliability has focused on special stochastic

network structures research by Shamir (1979), Rosenthal

(1977), Agrawal and Satyanairayana (1984), and Agrawal and

Barlow (1984); approximating techniques by Wallace (1987) and

Ball (1978), and Monte Carlo simulations by Fishman (1987b).

This last area is most relevant to the thesis and deserves

further explanation.

Fishman (1986) gives an excellent overview of Monte

Carlo methods in estimating network reliability. His article

explains four ways to calculate network reliability for an

undirected graph version of a SCBS; dagger sampling by Kumato

and others (1980), sequential destruction by Easton and

others (1980). bounds estimation by Fishman (unpublished),

and estimation based on failure sets by Karp and Luby (1983).

The last technique and source, as Fishman explains it, uses

failure sets, or equivalently cutsets, to estimate the

graph's reliability, and is most closely related to this

study's methodology. However, instead of sampling the entire

cutset as this thesis proposes, Karp and Luby's Monte Carlo

simulation procedure repeatedly samples single, randomly

selected cuts K times to determine network reliability. (Fis-

hman, 1986). This is an interesting approach, but because

the max-flow min-cut algorithm requires evaluation of the
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entire cutset, Karp and Luby's sampling technique is not

applicable.

The literature search found only two articles, both by

Fishman, that deal with Monte Carlo estimation of maximal

flow on a network. The first paper develops an algorithm that

offers both computational efficiency and reduced variance of

an unbiased estimator of maximal flow. However, he models

only randomly decreasing arc capacities Instead of nodes,

using a cumulative process that describes the arc deterio-

ration as normally distributed (Fishman, 1987a). In short,

his algorithm applies to RCN formulations instead of a SCBS

structure.

The second Fishman paper is more closely related to this

study's efforts. It combines two methods of importance

sampling (see Simulation Topics below) in a Monte Carlo

simulation to reduce the variance of the reliability estima-

tors of communication networks typically described by an SCBS

(1987b). However, this thesis is investigating the effect of

control variates, not importance sampling, in variance

reduction. Nonetheless, Fishman provides a proven approach

to reducing the variance of the estimator; a comparison of

the two variance reduction techniques would be a very

interesting continuation of this research.
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Simulation Topics

Definitions. Law and Kelton define Monte Carlo simula-

tion as "... a scheme employing random numbers, that is

U(0,1) random numbers (uniform distribution from 0 to 1],

which is used for solving certain stochastic or deterministic

problems where the passage of time plays no substantive role"

(1982:49). Monte Carlo simulation is widely used to solve

analytically intractable problems or as an approximating

method for NP-hard problems. Hence, its appeal for esti-

mating stochastic network performance.

An important feature of Monte Carlo simulation is how to

improve the statistical output of the simulation beyond

what's available from simple or crude sampling. Kleijnen

describes six techniques available for variance reduction in

Monte Carlo simulations:

1. Stratified Sampling, where the simulation response
is weighted based on which strata the random
numbers belong to.

2. Importance Sampling uses distortion of original
input variable distribution, where the response
later adjusts for the bias (As mentioned earlier,
Fishman shows this technique can be used in
calculating SCBS networks).

3. Selective Sampling is where input variables are
sampled according to their expected frequency of
occurrence.

4. Common Random Numbers use the same stream of
pseudorandom numbers to analyze two or more systems
or system variable.

5. Antithetic Variates use negative correlation
induced by two runs, one using R random numbers,
the other 1-R random numbers.
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6. Control Variates regress out effects of a variable
having both a known expectation and correlation
with the response.

(1974:Ch III). Additional explanations of Monte Carlo

simulation and variance reduction techniques are also offered

by Hammersley and Handscomb (1964), and Law and Kelton

(1982:Ch 11).

This thesis will investigate the last two techniques -

antithetic variates and control variates. The antithetic

technique, known as the assignment rule or correlation

induction strategy, is implemented through assigning a common

random number stream or its antithetic counterpart at the

experimental design points (Schruben and Margolin, 1978).

The theory behind it, and the combined effect of it and

control variates on variance reduction of the simulation

response, is covered shortly. The principal focus of this

research is on the effectiveness of the second variance

reduction technique, control variates. As a further refine-

ment only internal control varlates will be used (Law and

Kelton, 1982:359).

Control Variates. One of the better explanations of

using internal control variates in Monte Carlo simulations is

given by Lavenberg and Welch. The following is a summary of

their presentation.

Let p be an unknown quantity whose unbiased estimator Y

is the result of a single Monte Carlo simulation (p = E[Y]).
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If the expectation p. of a random variable C is both known

and correlated with Y, then C is a control variable that can

help calculate an unbiased estimator of ja whose variance is

smaller than Y. Therefore, for any constant a

Y(a) = Y - a(C - P') (2.1)

is an unbiased estimator of p. Furthermore,

Var[Y(a)] = Var(Y) + a2Var(C) - 2aCov(Y,C) (2.2)

From Eq (2.2), it can be shown Y(a) has a smaller

variance than Y if

2aCov(YC) > asCov(Y,C) (2.3)

Continuing, the value of A which minimizes the variance

of the estimator Y(a) is

A = Cov(Y,C) / Var(C) (2.4)

for a = A we find

Var[Y(A)] = Var(Y) - [Cov(Y,C)]2 = (1 - p2YC)Var(Y) (2.5)
Var(C)

where pYC is the correlation between Y and C. Therefore, if

Y and C are correlated at all, there will be some reduction

of variance over the old estimator Y (1981). Similar

explanations can be found in Lavenberg and others (1982), Law

and Kelton (1982:360), and Bauer (1987:Ch 2).
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The control variate technique applies in the network

simulation as follows. It stands to reason that certain

functions of surviving nodes would be correlated to the

resultant maximal flow (Bauer, 1988a). If that is the case,

and given that we already know the probability of node

survival, then it stands to reason that some function of the

nodes meets the definition of control variables and theoreti-

cally can be used in maximizing the variance reduction.

The multiple control version of Eq (2.1) is also

available, but for a couple of reasons this thesis will only

explore scalar control variates. First, a search of the

literature reveals that no simulation experiments have been

conducted to explore the concept of variance reduction in

stochastic networks as applied to expected maximum flow.

Therefore, it is reasonable to first start with a scalar

control variate. Second, multiple controls generally reduce

the efficiency of the variance reduction due to the necessity

of estimating the vector version of a (Bauer, 1987:14;

Lavenberg and others, 1982:184). Consequently, a scalar

control should show a significant variance reduction before

moving to the multiple control stage. Further explanations

of multiple control variates are given by Lavenberg and Welch

(1981), Lavenberg and others (1982), Bauer (1987), and

Rubinstein and Marcus (1985).
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RSM and Rxperimental Desion. The objective of experi-

mental design and RSM is to express the simulation response

"...as a function (a first or second degree polynomial) of

the independent variables" (Kleijnen, 1974:79). Hence, this

thesis will use experimental design and linear regression on

one network of particular interest in order to gain more

insight into network performance and establish the method-

ology for future analysis. Since only two network parameters

can be improved - component capacity and probability - these

two provide the only types of independent variables in the

experimental design. Unfortunately, almost every component

of a network contains both, leaving the number of potential

factors for the experimental design in the hundreds.

Therefore, a combination of user knowledge of the network,

and group and factor screening designs will be necessary to

reduce the full factorial design to a manageable size.

A search of the published literature failed to find any

research of response surfaces and stochastic networks to base

this study on or compare results with. The following sources

provided the guidance for conducting the experimental design

and response surface analysis: Kleijnen (1974), Box and

Draper (1987), and Montgomery (1984).

Antithetic Variates. The technique of antithetic

varlate reduction investigated by this thesis, the Schruben-

Margolin correlation induction strategy or assignment rule,
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is straight-forward. Rather than running either independent

random number streams or the same common random number stream

R at all design points (where R is the set of random numbers

r,,r.. ... r,), they assign R's antithetic counterpart A (where

A is the set of random numbers 1-r,,1 -r,. .. 1-r ) to half of

the experimental design points based on an orthogonal

blocking strategy. In other words, the design matrix is

divided into two orthogonal blocks (i.e. a one-half frac-

tional design blocked on a higher order interaction). From

there, all design points in one block are assigned the random

number stream R, and the design points in the other block are

assigned the antithetic number stream A (1978:507-514).

Incorporating this method in the experimental design

should reduce the variance of the response surface, thus

giving a more accurate estimate of the response. For

example, if the random number stream R turns out an artifi-

cially high or low estimate of the maximum flow or relia-

bility, all observations of the experimental region will be

biased high or low. By using antithetic streams at blocked

design points, that bias should be countered in the opposite

direction. However, Schruben and Margolin's strategy

requires the following assumptions for variance reductio to

be valid:

1. Zero correlation exists between two observations
using different independent random number streams.
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2. A positive correlation exits between the responses
of any two distinct design points with the same
random number stream R or A.

3. A negative correlation exits between the responses
of any two distinct points with one point using R
and the other using A random number streams.

4. The simulation has equal variance across the region
of interest.

(1978:508). Unfortunately, the size of the experimental

design precludes this analysis from offering a complete proof

of Assumptions (2) and (3); Instead, only empirical evidence

is offered.

One final question posed by using Schruben and Margo-

lin's assignment rule is this: Does combining their correl-

ation induction strategy with control variates offer a better

estimator of network performance? This combined strategy is

the subject of a recent paper by Tew and Wilson (1987), where

they compare the combined strategy to independent random

number streams, common random numbers, the assignment rule,

and control variates, and develop a methodology for deter-

mining the superiority of the combined method (1987:415).

This thesis' objective of investigating SCBS scalar control

variates and response surfaces precludes a thorough investi-

gation of this area. However, the methodology of this study

conducts a comparison of common random numbers, independent

random numbers, and the assignment rule in an example

experimental design to empirically determine the best

approach for the larger networks.
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111. METHODOLOGY

This chapter covers two important areas of the thesis'

methodology - Simulation Code and Experimental Design. In

the Simulation Code section, the logic and algorithms used to

implement the Monte Carlo simulation in the FORTRAN code

called MAXPLO are explained in detail. Also, the procedures

and tests used to verify MAXFLO are also described. The

Experimental Design section covers the selection of control

variates and the experimental design used for developing the

response surface equations. Finally, in the Example Problem

section, a simple network problem Is offered as an illustra-

tive example of the methodology.

Simulation Code

The purpose of this section is not to describe, line-by-

line, every function and nuance of MAXFLO. For that, the

reader is referred to the source code and in-line comments

in Appendix E. Rather, it is to cover the theoretical

principle of proper cutsets and proper cutset generation, and

their advantages in SCBS simulation; random number genera-

tion; and MAXPLO verification.

Cutsets and Simulation. Referring to Figure 3-1 on the

following page, the proper pathset and cutset can be repre-

sented in computer memory in two-dimensional arrays, or

lexicographically (in matrix form) as shown in Tables 3-1 and

3-2.

3-1



i~~X |X 4oI I | i .... .

X3

Figure 3-1. Example Lexicographical Network

In Tables 3-1 and 3-2 X. represents the capacity of that arc

as shown in Figure 3-1. the columns are individual arcs whose

elements are arc capacity, and rows are individual paths or

proper cuts. (Note that there exists for each column an

unique Xv.) Once the cutset matrix is determined, the

maximum flow of this network can be found by taking the

minimum of the summation of each row's elements as postulated

by the max-flow min-cut theorem of Ford and Fulkerson

(1962:11).

This lexicographical representation highlights one key

insight of the proper cutset matrix: Changes in indivldua2
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TABLE 3-1 Patheets of Figure 3-1 Network

ARCS

S S A A B
to to to to to

Path A B B T T

1 X1 X3 X5
2 XI X4
3 X2 X5

TABLE 3-2 Proper Cutsets of Figure 3-1 Network

ARCS

S S A A B
to to to to to

Cut# A B B T T

1 X1 X2
2 X1 X5
3 X2 X3 X4
4 X4 X5

arc capacities affect only the elements of the appropriate

column; thus the composition of the proper cutset (i.e. the

placement of elements in the matrix) is not a function of

network parameters, but of network topoloa . In other words,

once the proper cutset matrix is found, variations in maximum

flow due to changes in X. can be calculated using the same

matrix.

This insight can be taken one step further when consi-

dering the lower bound of X,. According to Ford and Fulker-
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son, where X. Is any real number greater than or equal to 0,

the max-flow min-cut theorem still applies (1962:22). There-

fore, where variations in X. include 0, the proper cutset

matrix remains valid for maximum flow calculations. This

leads to a second key Insight: Loss of an arc (or node) in

a SCBS is equivalent to setting the respective arc (and

incident arcs) capacity X,, in the proper cutset matrix to 0.

Therefore, a Monte Carlo simulation using proper cutsets can,

for each replication, simply substitute 0 for those X, whose

respective arcs are simulated to have been lost.

There are two additional simplifications related to the

characteristics of SCBS networks to take advantage of in the

simulation algorithm. First, because arc capacity can only

be either X or 0, an equivalent procedure to replacing X.,

with 0 is to simply ignore the column representing the failed

arc in the current replication's maximum flow calculation.

(Remember that each column N represents arc N with capacity

X,. unique to that column.) This is accomplished by using a

one dimensional array representing the status of arcs based

on the current replication's comparison of random number

draws and the individual arcs' probability of survival. This

state vector is used by the maximum flow calculation routine

in deciding which columns in the cutset matrix to ignore in

the current replication.

The second simplification is more accurately described

as taking advantage of a characteristic of the max-flow min-
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cut algorithm that especially manifests itself in a SCBS

network. Simply stated, once the value of any proper cut in

the matrix is found to be zero, there is no point in calcu-

lating the remaining cuts' values. This is because the max-

flow min-cut algorithm search is for the minimal value of all

proper cuts, which can be no lower than zero. A SCBS ampli-

fies this effect since, again, it's arcs' capacities can only

be X., or 0, thus increasing the number of proper cuts whose

values will be zero in any given replication.

Implementing this second advantage is easy. Each repli-

cation finds the maximum flow by going through the cutset

matrix and calculating every proper cut's value. During this

procedure, the current cut value is compared to the minimal

value found from the preceding cuts calculated thus far. If

the comparison shows the current cut's value lower than the

current minimal value, it replaces the minimal value used for

subsequent comparisons. Then, after the last proper cut

value is compared, the final minimal value will be the

maximum flow for that replication.

Now, if the comparison routine described above also

checked for and found the current proper cut's value to be

zero, the replication could be terminated at that point. As

pointed out, this additional check increases the efficiency

of the simulation by avoiding the need to go through the

entire cutset. A further refinement would be to sort the

cutset matrix by row according to probability of failure in
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order to minimize the average number of proper cuts the

replication goes through before finding a summation value of

zero. However, this additional feature is not implemented in

MAXFLO.

At this point, the representation of capacitated nodes

in proper cutsets should be covered. Fortunately, the

networks analyzed in this study do not contain capacItated

nodes; though, since the possibility exists, MAXFLO can model

them in the manner about to be described. But because

capacitated nodes can adversely affect the number of proper

cutsets, the reader should be aware of this facet of network

theory. Therefore, the situations where, and the degree to

which, the number of proper cuts differs from the number of

simple paths needs further explanation.

Again, Ford and Fulkerson provide a solution by simply

treating the capacity of the node as another arc (1962:24).

For instance, If In Figure 3-1 node A contained an Internal

capacity X., then the resulting pathset and proper cutset

would include an additional 'arc' A to A' as shown in Tables

3-3 and 3-4, respectively. Notice that the number of paths

in Table 3-3 didn't change from Table 3-1. There are still

three paths, with Paths 1 and 2 picking up the extra 'arc' A

to A' that represents node A's internal capacity. This makes

intuitive sense because a node 'arc' only adds a capacity

constraint to an existing path. It cannot provide any

additional choice in direction or branching since it does not
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TABLE 3-3 Pathsets of Figure 3-1 Network
With Node A Capacity

ARCS

S S A A' A' B
to to to to to to

Path# A B A' B T T

1 X1 XA X4
2 X1 XA X3 X5
3 X2 X5

TABLE 3-4 Cutsets of Figure 3-1 Network
With Node A Capacity

ARCS

S S A A' A' B
to to to to to to

Cut# A B A' B T T

1 X1 X2
2 X2 XA
3 X1 X5
4 XA X5
5 X2 X3 X4
6 X4 X5

connect to a distinct second node as arcs are normally

defined to do.

However, the proper cutset matrix in Table 3-4 is

different from the one in Table 3-2. Not only is an addi-

tional column (A to A') added, but two additional proper cuts

are created as well. Again, this makes intuitive sense since

proper cutsets are partially a function of the number of arcs
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F
available to form them, including the internal 'arcs' of node

capacities. Put another way, the additional capacity

constraint of a node has to be accounted for in the proper

cutset since it can theoretically be the limiting factor in

the network's maximum flow. Ford and Fulkerson show,

however, that the max-flow min-cut theorem still applies to

networks with capacitated nodes (1962:25).

A major question arising from expanded proper cutsets

due to capacitated nodes is how detrimental this charac-

teristic is to the efficiency of this study's simulation

methodology. In a simulation context there should be

considerable computational advantages of matrix row addition

and the zero lower bound limit versus the labelIng/pathset

algorithm; yet, such efficiencies could be offset by a

substantially larger proper cutset over the simple pathset.

Recall from Chapter II that for single terminal net-

works, where N is the number of nodes and M is the number of

arcs in an uncapacitated network G, the number of simple

paths is bounded by 2" -4. and the number of proper cuts by

21'* (Jensen and Bellmore, 1970:778). If it is assumed that

all nodes In the network are capacitated, then there are 2N

nodes to consider, giving a theoretical bound of 22"-* Yet,

since the additional 'arcs' create no new paths the upper

bound remains 2*-* .  Therefore, the potential number of

proper cuts versus simple paths is much higher in a capaci-

tated network. Nonetheless, it stands to reason that the new
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upper bound of 22"-2 for the cutsets is seldom realized for

the same reason that no new paths are created. Simply

stated, the combinatoric possibilities are somewhat limited

for the new 'arcs' since they do not provide the additional

paths needed to derive proper cutsets or to approach the

theoretical upper bound.

The situation changes somewhat in the case of multiple

terminal networks. In these situations, capacitated nodes

can drastically increase the number of cutsets. The network

in Figure 2-2, repeated here in Figure 3-3, illustrates this

point.

Figure 3-2. Multi-Terminal Network
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Currently, there exists only 2 proper cuts in the non-

capacitated node version of Figure 3-2 - (X,,X2 ,X,) and

(X4 ,X,,X); and 9 paths - (X,,X,), (X,,X,), (X1 ,XG), (X,.X4),

(X,.X.), (X2,X.), (X3,X.), (X",X.), (X.,X0 ). Now, assume that

nodes 1 through 4 take on capacities that are modeled as

internal 'arcs', and referred to as 'arcs' X.., X, X.., and

X41 , respectively. In this situation, 10 proper cuts now

exist - (X1 ,X,,X3 ), (XLLX 2 X 3) , (X1 ,XZIX 3 ), (X1 1.X=1 ,X3 ),

(X1,X2,X..).I (X11P,X ,L), (Xj0X21,XM1), (X11,X 1,X31),P

(X,,X,,X,), and (X,,); but, the number of paths remains the

same. The impact Is clear: Capacitated terminal nodes

exponentially increase the number of arcs. The effect is

similar to the one resulting from adding intermediary nodes

to the arcs as described in Chapter II.

Again, the networks in this study contain non-capacl-

tated nodes with topologies resembling Figure 3-2 more than

Figure 3-1; hence, the concept of using proper cuts in

calculating maximum flow. The extent to which the proper

cutset differs in size from the pathset cannot always be

manually determined, nor can the effect this difference has

on simulation efficiency be predicted. This study will

provide some answers, but the definitive answer is beyond the

scope of this text and best left to future research.

Finally, a few comments about the cutset algorithm and

its implementation in MAXFLO. All nodes are represented as

numeric integers, with the source node S starting at 1 and
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the sink node T equal to the total number of nodes for single

terminal networks. (Hence, no integer between 1 and the total

number of nodes may be skipped.) In the case of multiple

source nodes, node number 1 is reserved as a dummy single

source node, and the node numbers immediately following 1 are

reserved for the actual source nodes. In a similar manner

for multiple sink nodes, the last numbers are reserved for

the sink nodes, and an additional number is created for a

dummy single sink node. Furthermore, dummy arcs from the

dummy single source node to the actual multiple source nodes,

and from the multiple sink nodes to the dummy sink node, are

required. This type of input is awkward, but allows for a

faster generation of all simple paths.

Arcs are referred to by the source node integer called

the Tail and the destination node integer called the Head.

All node and arc capacities are represented as integer

values, while their probabilities of survival are stored as

positive real numbers between 0 and 1. This procedure is

used because of its ease in programming the matrix represen-

tation of the pathset and proper cutset, and the state vector

in the simulation. Furthermore, such integer depictions of

the network do not require a sophisticated user interface.

A subroutine is also available to change the network

parameters without having to re-enter the entire network.

However, the nature of proper cutsets limits what kind of

changes can be made before the network has to be re-entered
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and the proper cutset recalculated. In general, the rule is

this: No additional nodes or arcs can be added - only

existing ones can be modified or taken away. A few examples

illustrate this rule.

For a non-capacitated node, entering 0 will retain the

node for simulation purposes, but no internal 'arc' will be

generated. However, that node may not take on future

capacity - to do so will require the network to be completely

re-entered and a new proper cutset calculated. On the other

hand, if that node is initially entered with a capacity, that

node must always retain some integer capacity. Capacitated

nodes cannot be entered with zero capacity because of the way

MAXFLO retains the cutset arrays. Instead, either an

artificially low capacity must be entered or the probability

of survival set to .00, to emulate a node with potential

capacity. There are no restrictions on changing node

probabilities of survival.

Arcs are somewhat more flexible. Again, no arc can be

added to the network without recalculating the proper cutset.

However, capacity can be changed, including the ability to

reduce it to zero. Like nodes, there are no restrictions on

changing arc probabilities of survival.

The inability to add nodes and arcs arises from the fact

that adding components alters the network topology, thus

requiring a recalculation of the proper cutset. This doesn't

mean that a new network has to be entered every time a new
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arc or node addition is modeled, however. The trick is to

include all possible future nodes and arcs in the current

network with their survival probabilities set to zero. This

way the cutset accounts for their potential presence, but the

simulation will ignore their effect. Then, to 'add' one of

the new components to the network, that component's survival

probability is simply set to a value above zero.

Proper Cutset Generation. Using the cutset approach

requires generating the proper cutset from the pathset. Once

it is generated, an option is provided to save the cutset and

its parameters, thus eliminating the need to regenerate the

network cutset for future use. But it must be produced the

first time to be used at all - and it turns out to be the

most difficult subroutine in MAXFLO.

The difficulty lies in separating proper cuts from the

larger class of cuts in a reasonable amount of time. At

first glance, this appears to be a non-polynomial (NP)

problem since the upper bound of proper cuts is known to be

22"-0. Fortunately, an algorithm by Shier and Whited (1985)

provides a faster way of calculating proper cuts from the

pathset.

The algorithm can best be described by an example

network problem given in their article that is similar to

Figure 3-1. From that network, the path polynomial is

written as

X1 X3X.1 + X1 X. + XAXS (3.1)
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where all arithmetic operators are Boolean. The inverse

polynomial of Eq (3.1) is found by complementation to give

(X1 + X. + X')(X + X4)(X, + X'). (3.2)

Expanding Eq (3.2) out and deleting non-miminal elements will

then give the proper cutset polynomial. For this example,

expanding the first two terms in Eq (3.2) gives

(X1 + XX + X1 X0 + X + X- + X4X.)(X. + X.), (3.3)

and expanding the remaining two terms of Eq (3.3) gives

X +X2 +X IXX 3 + X X X + XXX 4 +XXX 4 + X.X4 X

+ X1 XD + X1 XX + X'XO + X1 X.X. + X.X4X + X.X.. (3.4)

Since the first term XX 2 is contained In terms 2,3,4; the

seventh term XX, in terms 8,9,10; and the twelfth term X4X.

in terms 6,11, Eq (3.4) is reduced to

xIx2 + XaX.X. + XIX. + X.x. (3.5)

which is the proper cutset polynomial (1985:315). Note that

Eq (3.5) gives the same answer found in Table 3-2.

Shier and Whited also offer several modifications to the

above algorithm that considerably improve its efficiency.

These algorithms are incorporated in the MAXFLO cutset

subroutine, but will not be explained in this chapter. (The

reader is referred to their article for a detailed explana-

tion.) They also report excellent computational results on
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networks approximately half the size of this study's net-

works; enough so to indicate that this algorithm is quite

sufficient for identifying the proper cutset (1985:315-317).

Additional references for cutset generation and network

reliability are found in Provan and Ball (1984) and Bellmore

and Jensen (1970).

Random Number Generator. A critical feature of any

simulation is the correct generation of pseudo-random

numbers. A detailed account of pseudo-random number genera-

tion is beyond the scope of this chapter; instead, the reader

is referred to an excellent and detailed explanation of this

topic by Law and Kelton (1982:Cha 3). What is pertinent is

the author's implementation of a pseudo-random number

generating function provided by Schrage (1979) as recommended

by Law and Kelton (1982:227). This function requires a

computer with a 32-bit word or larger and the NOOVERFLOW

option activated on VMS FORTRAN compilers.

MAXFLO Verification. The term verification describes

the procedure for determining whether a computer program

correctly simulates the model, whereas in validation the

objective is to ascertain if the model itself correctly

reflects the actual system (Law and Kelton, 1982:337-338).

This study assumes that systems exist which can actually be

modelled this way; thus, validation will not be accomplished.

This leaves the verification process, which is conducted as

described below.
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There are two essential features of MAXFLO to verify to

insure the output results are correct - proper cutset

generation and Monte Carlo simulation. The pathset and proper

cutset algorithms were checked using several small networks

(N 5 6, M 5 15) whose paths and cutsets were both exhaus-

tively enumerated and graphically deduced. Additionally, a

deterministic, 10-node 21-arc network from Jensen and Barnes

(1980:148) was tested for pathaet and cutset generation, and

for maximal flow by setting all probabilities to 1.0. In all

cases, pathset and cutset generation works correctly, as well

as finding the same maximal flow of Jensen and Barnes' net-

work.

This leads to the second verification task of confirming

the Monte Carlo simulation out put of stochastic networks.

This is a more difficult because calculating the expected

value of a SCBS in order to compare it to the simulation

response's confidence interval is quite complex when N a 6.

On the small test networks, the confidence intervals did

contain the expected values, but as additional verification

the following technique was employed.

A sample network of 6 capacitated nodes, 7 arcs, and 3

paths was developed by the author. This network's expected

maximum flow was modeled on a spreadsheet to accommodate

changes in 3 selected network parameters. Eight (2-) runs

were made, comparing the simulation response's confidence

intervals to the spreadsheet calculations. The results are
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that all but one confidence interval contains the expected

maximal flow. Since the confidence intervals' a was .05,

this test gives no reason to doubt the simulation's accuracy.

(A complete presentation of this project follows shortly.)

Experimental Design.

The purpose of this section is to describe the experi-

mental design and procedures for finding the response surface

equations for maximal flow and network reliability. Addi-

tionally, the procedure for selecting control variates is

also discussed.

Screening Designs. The initial problem is finding those

factors of the SCBS who have the greatest affect on network

flow and reliability. As the Example Problem section shows,

this isn't as easy or obvious as it first appears. For

example, both component survival probabilities and capacities

influence the expected maximum flow, providing N + 2M

possible factors and requiring 2"2 experimental design

points for a complete, 2-level factorial design. In the case

of reliability, only the component parameter of survival

probability affects network reliability, thus requiring 21"

design points. Obviously, in either case a reduction in the

number of factors is necessary.

Part of the answer lies in reducing the number of

network components under consideration for improvement. One

way to do this is to consider only those arcs or nodes that
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can be realistically Improved In survivability or capacity.

It hardly makes sense to include in an experimental design

parameters whose components cannot change.

Another way to reduce the number of parameters is to

conduct a preliminary factor screening experiment based on

the Plackett-Burman designs (1946:323). The principal reason

for employing their designs are their small size and ability

to detect mutually unaliased main effects (Box and Draper,

1987:162,506). From this initial screening, a reduced number

of factors showing significant main effects will be used to

form the full first-order fractional design.

The possibility of a second-order response model cannot

be ruled out; hence, the methodology must also include

procedures for determining the existence of second-order

effects, and conducting a second-order experiment if neces-

sary. Guidance for checking second-order effects comes from

Montgomery (1984:449-450), and for conducting second-order

designs from Montgomery (1984:462-470) and Box and Draper

(1987:Ch 7).

Control Variate Selection. Chapter II describes the

mathematics for scalar control variates used in MAXFLO; the

current question is which scalar controls to investigate.

Since this is a new area of research, Bauer (1988) offers as

a general class of controls the total number of nodes that

are up (or down) in a given subset. This control variate is

an aggregate scalar measure of how many nodes in the subset
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are operative, and not a multivariate measure of the indi-

vidual performance of multiple nodes. For purposes of

clarity, this class of control variates is referred to as

survival variables.

Recall that a high correlation of a control variate with

the response results in a large variance reduction. There-

fore, the objective is to begin with a class of controls that

has a known expectation, and whose existence and effective-

ness has the greatest effect on network performance. In the

case of SCBS networks, survival variables best meet these

requirements.

As a group, nodes generally have a greater influence on

the network than arcs. This is because the loss of a node

affects all arcs incident to it, and by extension any and all

paths associated with those arcs. By contrast, the loss of

an arc only affects those paths containing that arc. There

are exceptions to this observation, the most obvious one

being the case where all paths go through a single arc. But

this exception rarely exists in the networks analyzed in this

study, thus making survival variables a logical control to

research.

This thesis restricts its research to the total number

of operative nodes in a given subset as the scalar control

variate. More specifically, this means that certain survival

variables believed to be highly correlated to network maximum

flow and reliability are identified by the analyst to MAXFLO
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as forming the control subset of interest. Mathematically,

this idea is expressed as follows.

Because of the stochastic binary nature of the network,

the random variable Y, is defined as

0 with probability of P,
Y2 =

1 with probability of 1 - P, (3.6)

where P. is the probability of survival (P,) of component I.

The control variate is defined as

SV - E YZ (3.7)
I

with expectat,3n

3*

E(E Y.) - E P. - (3.8)
1 1

where N is the number of components in the subset. There-

fore, the controlled estimate of the response Y is given by

Y(P) - Y -(SV - 'm) (3.9)

where

SV = E SV.. (3.10)

and M is the sample size.

MAXFLO automatically calculates the expected number of

operative nodes of the control subset by simply adding their

individual probabilities of survival. After each simulation,
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MAXPLO regresses out of the maximum flow the influence of the

control subset, and gives the resulting mean, standard

deviation, and 95% confidence interval for the uncontrolled

and controlled maximum flow estimate. The control subset can

include any combination of nodes from none to the entire

network.

As for node selection, one obvious method for choosing

which ones to put in the control subset is intuition based

on network topology. However, a more precise procedure

offered by the author Is to use coefficients from the

response surface polynomials as a guide for node selection.

Since the coefficients are a measure of response sensitivity

to network parameters, one can also say that they measure,

relative to each other, the degree of correlation to maximum

flow. Therefore, this study will use the RSM polynomial

equations to help select the control subset, and compare the

results to intuitive selections.

Example Problem.

The preceding topics lay the foundation for the experi-

ments run in Chapter IV. The following example problem uses

a procedure and format similar to the one used in Chapter

IV's experiments.

Example Network. The example problem is based on the

network in Figure 3-3 on the following page. The capacity of

each component is represented as a integer value while the P,
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Figure 3-3. Example Problem Network

for that component Is shown at two-dlglt significance (of

course no greater than 1.0). For this sample model, all the

P. are independent.

Experiment Objectives. The objectives of this experi-

ment are:

1. Verify MAXFLO Monte Carlo simulation routine by
comparing simulation results to expected values
calculated by spreadsheet.

2. Investigate effects of internal nodes on network
performance as expressed in terms of maximum flow.
This includes testing for quadratic effects and, if
necessary, expanding the first-order design to
determine second-order coefficients.

3. Use the results of Item (2) to select a subset of
the internal nodes to use as control variates, and
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investigate their effect on reducing the response
variance.

4. Demonstrate methodology used on larger networks in
Chapter IV.

Experimental Design. The experimental design selected

for this project is a 2- full factorial orthogonal design

shown in Table 3-5 on the following page. The three factors

were selected based on the desire to analyze the effects of

improving internal processing nodes. Since there are four

candidates (nodes 2, 3, 4, and 5) and only three factors in

the design, node 5 was dropped due to having the highest

existing P,. Nodes 2, 3, and 4 were entered in MAXFLO and

are referred to as N2, N3, and N4.

The uncoded range of improvement for all three nodes is

.2, based on a general assumption that hardening the network

components is a difficult, marginal task. Transforming the

uncoded values of the survival probabilities P, into the

coded values used in the experimental design follows Box and

Draper's definition,

X1  - (3.11)
Si

where X, is the coded value from -1 to 1, 6. is the center-

point of the range of interest, Si is one-half the range of

interest, and 8. is the current point of interest (1987:20-

21). For example, in the case of N2's P, of .3, the range

of improvement is .2, Si is .1, and the centerpoint 8, is .4.
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TABLE 3-5 Experimental Design for Example Network
In Figure 3-3

Survival Probabilities
Response

Uncoded Coded Antith.
Random Maximum

Run # N2 N3 N4 N2 N3 N4 Number Flow

1 .3 .7 .5 -1 -1 -1 R 79.915
2 .3 .7 .7 -1 -1 1 A 99.660
3 .3 .9 .5 -1 1 -1 A 80.065
4 .3 .9 .7 -1 1 1 R 102.240
5 .5 .7 .5 1 -1 -1 A 90.190
6 .5 .7 .7 1 -1 1 R 113.195
7 .5 .9 .5 1 1 -1 R 90.355
8 .5 .9 .7 1 1 1 A 111.375
9 .4 .8 .6 0 0 0 4310089 97.080

10 .4 .8 .6 0 0 0 29153819 95.650
11 .4 .8 .6 0 0 0 513446243 96.900
12 .4 .8 .6 0 0 0 85491536 96.585
13 .4 .8 .6 0 0 0 3191455 97.120
14 .4 .8 .6 0 0 0 1801087584 95.265

If the design point calls for a coded value of 1, then the

uncoded setting for the simulation is given by

1 = 6 - .4 (3.12)
.1

or 81 = .5. Finally, the intent of this example in inves-

tigating the impact of internal nodes on maximum flow reduces

the potential number of factors enough to preclude the use of

screening designs.

Each d-sign point represents one simulation of the

sample network of Figure 3-3 with the appropriate parameters

set according to Table 3-5. Each simulation ran 10.000
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separate network samples to calculate the response and

deviation. Additionally, six center-point runs were made to

test for quadratic effects. This test will be covered shortly

in the Experimental Results section.

Sampling Procedure. Another feature incorporated in

this example design is the Schruben-Margolin assignment rule.

This rule proposes that instead of using the same random

number stream or independent random streams at all design

points, use a common random number stream on one-half of a

design that is blocked on a high-order interaction, and

employ its antithetic random number stream on the other half.

In order for this technique to produce a variance reduction,

there must exist a negative correlation between the response

of a common random number experiment and its antithetic

counterpart (1978:504-520). Additional assumptions of this

technique are covered in Chapter II.

Aside from the formal requirements, Schruben and

Margolin's assignment rule also holds an intuitive appeal

based on its antithetic approach. For example, if the common

random number stream selected for the experiment turns out an

artificially high or low estimate of the response, all design

points in the experiment will be biased high or low. By

using antithetic streams at blocked design points, that bias

should be countered in the opposite direction.

This intuitive appeal is no substitute for meeting the

assumptions stated in the literature review, however.
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Furthermore, it is not clear such a sampling approach is

better than common or independent random numbers. A conclu-

sive proof of the assignment rule's effectiveness would

require, among other things, evidence that a negative correl-

ation exits between a given random number stream and its

antithetic counterpart at all design points; clearly an

exhaustive task for larger designs.

Instead, three empirical tests are made to assess the

significance of antithetic sampling in SCBS networks. First,

an evaluation of the simulation's sensitivity to antithetic

random number streams at the first design point is made.

Second, the existence of a negative correlation between a

random number stream and its antithetic counterpart at the

same design point is tested. Finally, the first eight design

points in Table 3-5 are rerun using common and independent

random numbers. The standard errors from the resulting

response surfaces are compared to see if any approach is

significantly better (or worse).

The first test offers empirical evidence of the rela-

tionship between bias and antithetic random numbers. Figure

3-4 on the following page shows the plot of MAXFLO's esti-

mates of the first design point of Table 3-5 for various

sample sizes against the actual calculated expected flow of

78.061. The regular random number stream for seed 33425688,

(rlr 3,...,r.), consistently underestimates the actual flow

for sample sizes above 2000, whereas its antithetic
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Figure 3-4. Plot of Maximum Flow Estimates

counterpart (1-r 1 ,i-r......,1-r.) overestimates for sample

sizes larger than 1000. The adjusted estimate, using non-

synchronized antithetdc pairs (r., 1-r, r , 1-r,, .. . ,

r...) appears to correct this bias. In other words, where the

regular random number stream fails to "visit" the higher flow

network configurations often enough, its antithetic stream

will counter by sampling them too often. Thus, it appears

that antithetic techniques can correct the bias of small

sample sizes. However, research using synchronized anti-

thetic pairs is recommended before drawing any conclusions.

The next test looks at the requirement of negative

correlation of regular and antithetic random number streams
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for the Schruben-Margolin assignment rule. Table 3-6 shows

the results of 24 simulations (10,000 samples each) using 12

independent random number streams and their antithetic

counterparts at the first design point in Table 3-5. SAS

PROC CORR ran this data to determine the amount and direction

of correlation.

The result of .00793 correlation indicates the anti-

thetic responses are nearly independent of the regular random

number stream. Unfortunately, this does not support the

assumption of negative correlation between the two random

number streams. Therefore, the assumption of negative

correlation at all design points may not hold. While this is

not conclusive evidence for all design points, it does cast

doubt on the advantages of using the Scruben-Margolin assign-

ment rule.

TABLE 3-6 Comparison of Simulation Output at Design Point 1
(Table 3-5) of Regular and Antithetic Number Streams

Random Regular Antith. Actual
Number Seed Stream Stream Exp Flow

4310089 79.915 77.940 78.061
29153819 78.560 79.27 "1

513446243 77.860 75.515
85491536 77.630 78.010
3191455 76.885 78.025
1801087 77.185 77.455

30131595 79.495 78.235
6718321 77.830 80.925
968328 77.445 79.415

74599049 78.110 78.300 "
51427813 78.115 77.235 "

108979503 78.110 75.700 "
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The third test compares the standard errors of the

response surfaces derived from the first eight design points

in Table 3-5 using different sampling techniques. (A detailed

explanation of how these parameters are estimated follows

shortly in the Experimental Results section.) Comparing the

results of assignment rule, common random number, and

independent random number sampling techniques in Table 3-7

indicates that the Schruben-Margolin procedure has the lowest

error of .373. Common random number sampling is a close

second; however, independent random number sampling is

clearly at a disadvantage with a standard error rate three

times that of the assignment rule. (Also note the similar-

ities of parameter estimates between the three techniques.)

This simple test, while not conclusive, offers strong

TABLE 3-7 Parameter Estimates and Standard Errors for
First-Order Response Surface Model (Coded Variables)

Sampling Parameter Stnd.
Technique Variable Estimate Error

Schruben- Intercept 95.874 .373
Margolin N2p 5.404 .373

N4p 10.743 .373

Common Intercept 94.370 .485
Random N2p 5.380 .485
Number N4p 11.500 .485

Independent Intercept 94.860 1.155
Random N2p 6.480 1.155
Number N4p 11.440 1.155
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evidence that either the Schruben-Margolin assignment rule

or common random numbers is the best sampling strategy.

The previous tests show that simulation of SCBS networks

is subject to a small bias, yet sensitive enough to the anti-

thetic aspects of random number generation to allow for

correction. Furthermore, the antithetic requirements of the

assignment rule may not exist, nor does that sampling

technique offer any major advantage over common random num-

bers. Because of these doubts, and the simplicity of common

random number sampling, Chapter IV's experiments use the

latter technique. For current research efforts in this

regard, see Wilson and Tew (1987), and Nozari and others

(1987).

While the following chapter uses common random number

sampling, this example uses the assignment rule for the

purpose of demonstrating the technique. For this example,

the random number stream assignments are shown in the ANTI-

THETIC VAR column in Table 3-5, where R is the normal random

number stream whose seed is 4310089, and A is its antithetic

version. The random number stream assignments are based on

a three-way interaction blocked design. Centerpoint simula-

tions use regular, independent random number streams based on

the seeds shown in the ANTITHETIC VAR column.

Experimental Results. The first objective is the

verification of the simulation routine. Table 3-8 shows the

simulations' estimated responses to the expected values.
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Since all 14 simulations' confidence intervals (a = .05)

contain the actual expected maximum flow, chances are

MAXFLO's Monte Carlo routine performs properly. (Specifi-

cally, this test fails to disprove the hypothesis of MAXFLO

correctly performing the Monte Carlo simulation.) Addition-

ally, the diagnostics routine of MAXPLO shows 3 paths and 10

proper cuts formed by this network; this data too is con-

firmed by manual inspection of the example network to be

correct.

A caveat about the confidence intervals should be

mentioned. MAXFLO calculates small-sample confidence

intervals using the t-distribution statistic. Technically,

calculating this confidence interval assumes random sampling

TABLE 3-8 Comparison of Simulation Estimate
of Calculated Expected Maximum Flow

Uncoded Simulation Estimate Actual
Run # N2 N3 N4 95% Conf. Interval Exp. Flow

1 .3 .7 .5 79.915 ± 2.797 78.061
2 .3 .7 .7 99.660 ± 3.041 99.661
3 .3 .9 .5 80.065 ± 2.827 79.896
4 .3 .9 .7 102.240 ± 3.059 101.496
5 .5 .7 .5 90.190 ± 3.013 89.398
6 .5 .7 .7 113.195 ± 3.231 110.998
7 .5 .9 .5 90.355 ± 3.032 91.111
8 .5 .9 .7 111.375 ± 3.217 112.711
9 .4 .8 .6 97.080 ± 3.049 95.416

10 .4 .8 .6 95.650 ± 3.036 95.416
11 .4 .8 .6 96.900 ± 3.016 95.416
12 .4 .8 .6 96.585 ± 3.056 95.416
13 .4 .8 .6 97.120 ± 3.034 95.416
14 .4 .8 .6 95.605 ± 3.061 95.416
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from a continous, normal distribution; though, it is also

appropriate for populations with moderate deviations from

normality, and in certain cases where there is a normal

approximation to a binomial distribution (Mendenhall and

others, 1986:287-288;330-331). Calculating the confidence

intervals of these simulation estimates requires these

assumptions because of the high frequency (.75 to .85) of

zero flow, and the discrete nature of SCBS networks.

Apparently, the t-statistic is robust enough to use on the

example network distribution, and there is no reason to

suspect it to be less so on the larger networks. But the

assumptions and limitations of using it for these networks

should be kept in mind.

The second objective is investigating the affect of the

internal nodes on network performance. This is accomplished

by linear regression, using the SAS procedure PROC GLM to

calculate the sums of squares and coefficients. The results,

shown in Table 3-9, indicate that the survival probability of

node 3 (N3p) has virtually no effect on the expected flow.

However, N2p accounts for 20% of the total sums of squares,

and N4p an overwhelming 79%. These results do not reflect

the main effects the author expected, though. A closer

examination of the model shows why N4p dominates the ANOVA

table.

The other two main effects are part of the top two paths

in the network, where both contain more components than the

3-32



TABLE 3-9 Analysis of Variance Table for First-Order
Response Surface Model (2')

Sums of Mean P

Source D.F. Squares Square Stat.

Model: 3 1157.12 385.71 284.72

N2p 1 233.66 172.48
N3p 1 .14 .11
N4p 1 923.32 681.58

Error 4 5.42 1.36

Total 7 1162.54

R Square .995

bottom path that includes N4p. Therefore, the effect of

increasing N2p or N3p is mitigated by the very high prob-

ability of path failure due to at least one of the other com-

ponents failing. By contrast the bottom path contains only

three stochastic components; thus, any improvement in one of

its component's survivability will affect that path's reli-

ability to a greater degree than the top two paths.

To calculate the parameter estimates, N3p's sum of

squares is moved into the error sums of squares, giving the

results shown in Table 3-10. (This is the same procedure used

to calculate the results of Table 3-7.) Remembering that

these estimates are for coded variables, the following

polynomial equation describes the response for the range of

variables described in the experiment by Table 3-5:

Y = 95.874 + 5.404(N2p) + 1O.743(N4p) (3.13)
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TABLE 3-10 Parameter Estimates for First-Order
Response Surface Model (Coded Variables)

Parameter Stnd. T
Variable D.F. IEstimate IError Star.

Intercept 1 95.874 .373 257.08
N2p 1 5.404 .373 14.49
N4p 1 10.743 .373 28.81

Tables 3-7 and 3-10, and Eq (3.13) not only predict the

simulation output, but the parameter estimates measure the

sensitivity of the estimated maximum flow to their respective

components as well. Also, as covered shortly, the coeffi-

cients provide a guide for selecting nodes for the control

variate subset.

Before proceeding to that aspect of the simulation, a

test for the presence of second-order effects in the network

should be conducted. Following Montgomery (1984:449-450), 6

runs were made at the design center using 6 independent

common random number streams (Runs 9-14 In Table 3-5) to

calculate a pure estimate of error o2. For this example, 02

is found by dividing Eq (3.14)

(97.08)2 + (95.65)2 + (96.9)2 + (96.585)2 + (97.12)2

+ (95.605)2 - (578.94)2/6 (3.14)

by 5, giving an estimate of error of 2.3292.

Next, the sums of squares for pure quadratic, SS. , is

found by
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N 1 + N. (3.15)

where Ni is the number of experimental design points, N, is

the number of centerpoints, Y1 is the average response of the

experimental design, and Y. is the average response at the

centerpoint. For this example, SS D is 1.301.

Finally, an F-statistic for quadratic effects is given

by Eq (3.16)

a =(3.16)

which in this example is .5586. This is considerably lower

than 6.61 for the test statistic FPo,, thus failing to

disprove the hypothesis of no quadratic effects. Therefore,

there Is no reason to develop a second-order model.

The third objective Is to select nodes for the control

variate subset to reduce the variance of the simulation

output. Since the response surface in Eq (3.13) indicates N2

and N4 exert the greatest influence on expected maximum flow,

they are the most likely candidates for consideration. Since

this example network is small enough to investigate all four

intermediate nodes, various combinations of nodes were tried

to test the validity of using response surface coefficients.

Table 3-11 on the following page summarizes the results of

different control variate subsets on the design centerpoint,
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TABLE 3-11 Variance Reduction Based on Survival of Nodes
in Control Subset at Centerpoint of Design

Nodes in Estimated Std. 95% Conf
Control Subset Max Flow Dev. Interval

0 97.080 155.58 ± 3.049
4 96.489 146.39 ± 2.869

2,4 96.356 144.78 ± 2.838
2,3,4,5 95.791 147.03 ± 2.880

3 97.074 155.58 ± 3.050
3,4 96.314 150.166 ± 2.944

Actual Exp Flow 95.416

where the random number seed is 4310089 and the sample size

is 10,000.

The control subset with the greatest variance reduction

is (2,4), giving a 7% reduction in variance and the confi-

dence interval over the uncontrolled (0) response. By

contrast, control subset (3) very slightly increases the

variance, subset (3,4) barely shows a variance reduction,

while subset (2,3,4,5) comes in third best after (4) and

(2,4). Clearly, including Node 3 in the control subset adds

nothing but statistical noise to the regression, while Nodes

2 and 4 contribute substantially to the variance reduction.

This behavior is predicted by the response surface of Eq

(3.9), suggesting the methodology for selecting nodes for the

control subset is sound.

The 7% reductions in variance is somewhat less than

expected. The low reduction may be partially due to the fact
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that no single node is a 'choke point'; i.e., the paths

aren't dependent enough on a node for it to exert a greater

influence on the expected maximum flow. Furthermore, as

pointed out earlier, a large number of stochastic components

with low survival rates tends to diminish the effects of

hardening a given node. It therefore makes sense that this

feature would also diminish the correlation that node has

with the overall flow in the network, thereby mitigating its

effectiveness as a control variate. Finally, a second class

of controls representing arc survivability has not been

considered; yet, it could significantly contribute to

variance reduction.

These two factors - topology and reliability - will vary

among networks such that predicting the effectiveness of

control variates is difficult. Keeping this in mind, and

using the response surface equation as a selection guide, the

control subset of nodes should provide a simple but useful

technique for variance reduction. Thus, following the

methodology just presented, the next chapter presents the

results of the larger networks.

3-37



IV. Experimental Results

This chapter presents the experimental results of

Networks A, B, and C. Specifically, a response surface

analysis of Network C is conducted, followed by variance

reduction investigations on all three networks.

Response Surface Analysis

Example Network. A response surface analysis was done

on Network C. whose topology is given in Figures 4-1 and 4-2

on the following pages. (The network's link list, the

document specifying all network component capacities and

survival probabilities, is found in Appendix C.) Figure 4-2

differs from the original network configuration in the

numbering of the nodes (due to dummy single source and sink

nodes), and the use of arc equivalents to replace nodes. The

use of arc equivalents is a powerful technique for reducing

the number of cuts in a network, thus increasing simulation

efficiency. Therefore, a short explanation of its implemen-

tation Is in order.

The original configuration of Network C in Figure 4-1

contains 39 nodes, 53 arcs, 198 paths, and 1,037 cuts. The

vast majority of the cuts (specifically 210, or 1024) are due

to the configuration of Nodes 13 through 22. Based on the

discussion of cutsets in Chapter II, it follows that any

reduction in the number of nodes in this group will exponen-
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tially reduce the number of cuts. Arc equivalents is one

such method of eliminating nodes that meet certain condi-

tions.

Specifically, if a sequence of nodes exists such that

each node has only one incoming and one outgoing arc, those

nodes and incident arcs can be replaced with an equivalent

arc. Furthermore, if all components' P, In the sequence are

independent, then the equivalent arc's P, is the product of

the replaced components' P6, and its capacity is the minimum

value of the replaced components' capacities. For instance,

in Figure 4-1 the segment from Node 12 to Node 38 contains

three independent components: Arc 12-18 (P, = .7, Capacity =

4800), Node 18 (PS = .5), and Arc 18-38 (PS - .7, Capacity =

1200). This segment is replaced in Figure 4-2 by Arc 9-30

whose P. is .245 and capacity is 1200.

Additionally, because the arc equivalent is an equal

structure, it does not introduce bias in the Monte Carlo

simulation. Therefore, not only is the simulation more

efficient, but its estimate of maximum flow is equally valid.

(If one or more components in the sequence is dependent, an

arc equivalent is still possible; however, calculating the

arc equivalent's components Is more difficult. Since Network

C does not contain dependent components, an example is not

offered.)

Using arc equivalents, Nodes 7, 8, 9, 10, 18, 19, 20,

21, and 22 in Figure 4-1 are absent in Figure 4-2, resulting
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in an equivalent network with only 30 nodes, 44 arcs, 198

paths, and 34 cuts - a considerable reduction of the size of

the cutset. Another interesting observation is that the

number of paths in Figures 4-1 and 4-2 is the same. Indeed,

this observation is an example of a unique characteristic of

arc equivalents. Specifically, arc equivalents only reduce

the number of proper cuts, while the number of paths remains

unchanged; although, both pathsets and cutsets benefit by the

reduced number of network components. Thus, Network C, as

shown in its equivalent form in Figure 4-2, is used by MAXFLO

for the experimental design.

Experimental Design and Results. The design objective

is to find those components whose improvements will best

increase network performance as measured by estimated maximum

flow and network reliability. Because Network C contains so

many possible factors (118 to be exact), a combination of

intuition and Plackett-Burman screening designs is used. (It

is also possible to screen all components by using a combined

group and factor screening design. Although this technique

is beyond the scope of this text, it is a good topic for

future study.) For this network, the following 19 factors

from Figure 4-2 were selected.

The first two candidates are obvious due to their

position - the P. for Nodes 8 and 9 (or N8p and N9p). The

survival rates for Nodes 10, 11, 13, and 14 (N10p, N11p,

N13p, and Nl4p) are also good selections since between the
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four of them they affect 19 paths. The four arcs that go

directly from Node 8 to sink Nodes 15, 16, 30, and 31 are

good choices since they collectively ropresent the shortest

and most reliable paths in the network. Since both their

survival rates (A8-15p, A8-16p, A8-30p, and A8-31p) and

capacities (A8-15c, A8-16c, A8-30c, and A8-31c) are rela-

tively low, all eight are included in the screening design.

On the "supply side" of the network, the capacities of

Arcs 2-8, 3-8, 5-8, 7-8, and 8-9 (A2-8c, A3-8c, A5-8c, A7-8c,

and A8-9c) should be included since network capacity beyond

Node 9 exceeds the capacity of the source nodes and their

incident arcs. Because the survival rates of these arcs are

somewhat higher, those parameters are not examined. One

point to emphasize is that larger designs are available to

accommodate more factors; indeed, Plackett and Burman offer

two-level screening designs for up to 99 factors (1946:324).

The resulting 19 factor screening is shown in Table 4-1

on the following pages. The low (-) values are those that

currently exist, while the high (+) values represent the

potential improved capacity or P,. Capacity improvements are

based on standard increments of 300, 1200, 2400, 9600, and

19200, while P. improvements are a uniform increase of .2.

The design was run on a VAX 8650 under VMS 4.6 using a sample

size of 10000 and regular random number stream with 3036869

as the seed. The output results from MAXFLO are shown in

Table 4-2.

4-6



Table 4-1. Screening Design for Network C

Run N~p N9p N10p N11p N13p N14p

1 + + - - + +
2 - + + - - +
3 + - + + - -

4 + + - + + -

5 - + + - + +
6 - - + + - +
7 - - - + + -

8 .... + +
9 + .... +

10 - + ....
11 + - - - -

12 - + - + - -

13 + - + - + -

14 + + - + - +
15 + + + - + -

16 + + + + - +
17 - + + + + -

18 - - + + + +

19 - - - + + +

2 0 -.....

Run A8-15c A8-15p A8-16c A8-16p A8-30c A8-30p

1 + + - + - +
2 + + + - + -
3 + + + + - +
4 - + + + + -

5 - - + + + +
6 + - - + + +
7 + + - - + +
8 - + + - - +
9 + - + + - -

10 + + - + + -

11 - + + - + +

12 - - + + - +
13 - - - + + -

14 .... + +
15 + .... +
16 - + ....

17 + - + ....
18 - + - + - -

19 + - + - + -

2 0 .-...

4-7



Table 4-1. Screening Design for Network C (Cont.)

Run A8-31c A8-31p A2-8c A3-8c A5-8c A7-8c A8-9c

1 .... + + -

2 + .... + +
3 - + .... +
4 + - + ....-
5 - + - + - - -
6 + - + - + - -

7 + + - + - + -
8 + + + - + - +
9 + + + + - + -

10 - + + + + - +
11 - - + + + + -

12 + - - + + + +
13 + + - - + + +
14 - + + - - + +
15 + - + + - - +
16 + + - + + - -

17 - + + - + + -

18 - - + + - + +
19 - - - + + - +
20 .......

Coded Uncoded

Value Values

N8p N9p NlOp Nilp N13p N14p

.7 .7 .5 .8 .3 .7
+ .9 .9 .7 1.0 .5 .9

A8-15c A8-15p A8-16c A8-16p A8-30c A8-30p

- 75 .6 75 .3 1200 .6
+ 300 .8 300 .5 2400 .8

A8-31c A8-31p A2-8c A3-8c A5-8c A7-8c A8-9c

- 1200 .7 1200 1200 300 300 9600
+ 2400 .9 2400 2400 1200 1200 19200

SAS PROC GLM was used to calculate the regression

results, which appear in Table 4-3. The results show that

out of the original 19 factors, only five account for a
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Table 4-2. MAXPLO Estimates of Table 4-1 Design Points

Estimated Network
Run Maximum Flow Reliability

1 2136.702 84.40
2 1471.080 65.57_
3 1626.870 84.32

4 2044.843 84.52
5 1900.489 66.73
6 1702.523 64.89
7 1859.627 64.52
8 1729.518 64.95
9 2555.430 83.80

10 2245.587 65.67
11 2646.071 82.40
12 2214.773 65.91
13 2084.413 83.00
14 2123.717 84.62
15 2621.388 83.47
16 2774.981 84.13
17 1883.010 66.43
18 1749.056 64.03
19 2310.270 79.78
20 1169.152 62.78

significant portion of the sums of squares for expected

maximum flow: N8p, N9p, A2-8c, A3-8c, and A5-8c. Together,

these five factors explain 95% of the variation of expected

maximum flow. Because this is a screening design, only the

main effects are measured (Plackett and Burman, 1946:323);

however, the number of factors is reduced enough to allow for

a full factorial design.

Interestingly, only one factor out of the 19 screened

accounts for a significant amount of the sums of squares for

reliability: N8p. As Table 4-3 shows, 98% of the sums of

squares is explained by the variation of N8p. Since N8p
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Table 4-3. Sums of Squares for Table 4-1 Design

Sums of Squares

Source Maximum Flow Reliability

MODEL 3299594.387 1705.785

N8p 1249935.001 1673.718
N9p 196741.382 14.416

N10p 246.837 0.808
Nllp 3649.321 0.007
N13p 2223.266 0.255
N14p 168.386 0.001

A8-15c 30.076 0.002
A8-15p 3943.274 0.481
A8-16c 359.484 0.421
A8-16p 5383.399 3.715
A8-30c 261.075 0.318
A8-30p 3749.855 2.113
A8-31c 80347.080 0.648
A8-31p 25760.694 5.429
A2-8c 153612.938 0.662
A3-8c 1203365.268 1.270
A5-8c 339612.880 0.392
A7-8c 17895.632 0.592
A8-9c 12308.539 0.538

appears to be a significant factor in maximum flow as well,

it is an obvious choice for survival rate improvement. But

before such conclusions can be drawn, several additional

procedures need to be accomplished. These include a fac-

torial design that tests for possible interactions, a check

for second order effects (with a possible follow-up second

order experimental design), and regression diagnostics.

Since there are five remaining factors, a full factorial

design requires a only 32 design points (25). Additional

design centerpoints are also required to test for second
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order effects, and to form the basis of a second order

design. Since 10 centerpoints are required if we expand to

a 20 central composite, uniform precision design (Montgomery,

1984:463), all 10 are simulated in addition to the required

32 design points. These centerpoints also provide a good

statistical sampling for second order effects. Table 4-4

shows the experimental results. There were 10000 samples

taken at each design point with a regular random number

stream seed of 3036869, while the centerpoints used indepen-

dent random number streams. (Note that the range of P8 for

N8p and N9p is reduced by .04. This allows for a uniform

precision second-order design if necessary.)

Following Table 4-4, Table 4-5 shows the results of the

SAS PROC GLM regression of the data in Table 4-4 (without the

centerpoints). The first-order model has an R-Square value

Is .988, indicating a high degree of fit of this model to the

data. (Small, but statistically significant, two-way inter-

actions are also present; however, they are ignored because

of their practical insignificance). Furthermore, an addi-

tional check for second order effects is calculated as

described in Chapter 3 using the centerpoint data from runs

33 through 42 in Table 4-4. The resulting F-statistic is

1.1017, considerably lower than the Fo,1 , value of 5.12.

Thus, it appears that the response of maximum expected

flow for the coded variables is described by the first-order

polynomial in Eq (4.1) on the following page. A more useful
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Table 4-4. 20 Experimental Design for Network C

Est. Max Est.
Run NSp N9p A2-8c A3-8c A5-8c Flow Rel.

1 - - - 1169.152 62.78
2 - - - 1376.310 "

3 - - - + - 1548.608 It

4 - - - + + 1750.167
5 - - + - - 1310.505 "

6 - - + - + 1516.162 it

7 - - + + - 1687.208

8 - - + + + 1886.432
9 - + - - - 1288.522 64.21

10 - + - - + 1527.113 "

11 - + - + - 1743.144
12 - + - + + 1974.992 "
13 - + + - - 1464.682
14 - + + - + 1700.581
15 - + + + - 1915.268
16 - + + + + 2144.053
17 + - - 1434.863 77.33
18 + - - - + 1679.648 "

19 + - - + - 1889.871 "t

20 + - - + + 2127.018 it

21 + - + - - 1614.300 "

22 + - + - + 1857.175 I

23 + - + + - 2065.141 It

24 + - + + + 2298.823 t

25 + + - - - 1573.297 79.52
26 + + - - + 1865.037 "

27 + + - + - 2129.271 "

28 + + - + + 2414.532 "

29 + + + - - 1781.073 "

30 + + + - + 2070.851 "

31 + + + + - 2332.181 i

32 + + + + + 2614.178 "

33 0 0 0 0 0 1801.424 71.37
34 0 0 0 0 0 1833.608 71.02
35 0 0 0 0 0 1820.961 71.29
36 0 0 0 0 0 1820.931 71.43
37 0 0 0 0 0 1816.268 71.20
38 0 0 0 0 0 1815.133 70.86
39 0 0 0 0 0 1803.838 70.43
40 0 0 0 0 0 1797.171 70.91
41 0 0 0 0 0 1779.531 70.25
42 0 0 0 0 0 1816.184 70.92
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Table 4-4. 2 Experimental Design for Network C (Cont.)

Coded Uncoded
Value IValues

NSp N9p A2-8c A3-8c A5-8c

.70 .70 1200 1200 300
+ .86 .86 2400 2400 1200
0 .78 .78 1800 1800 750

Table 4-5. ANOVA and Parameter Estimates of
2 Experimental Design

Source I DF Sum of Squares F-Value

Model 5 3742567.705 428.800

N8p 1 1031177.244 590.73
N9p 1 345985.548 198.21

A2-8c 1 239270.791 137.07
A3-8c 1 1661489.497 951.82
A5-8c 1 464644.626 266.18

Error 26 45385.368
Total 31 3787953.074

Param. = 0 Std. Error
Parameter Estimate T Value of Parameter

Intercept 1804.692 244.35 7.386
N8p 179.511 24.30 7.386
N9p 103.981 14.08 7.386

A2-8c 86.471 11.71 7.386
A3-8c 227.863 30.85 7.386
A5-8c 120.500 16.32 7.386

Y = 1804.692 + 179.511(N~p) + 103.981(N9p) + 86.471(A2-8c)

+ 227.863(A3-8c) + 120.5(A5-8c) (4.1)
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version of Eq (4.1) using the uncoded values is found by

converting the coefficients. For this example, the uncoded

version is

Y = -2,103.19 + 2243.389(N8p) + 1299.763(N9p) + .144(A2-8c)

+ .380(A3-8c) + .268(A5-8c) (4.2)

Both equations are good only for the region of the response

surface defined by the input domain of Table 4-4.

Before continuing with an analysis of this section's

results, two tests were conducted to confirm the statistical

assumptions of linear regression. Specifically, a plot of

residuals versus predicted values is shown in Figure 4-3 to

substantiate the presence of constant variance, and the plot

of residuals in Figure 4-4 is presented to confirm a normal

distribution (Box and Draper, 1987:119-123,128-131).

The plot in Figure 4-3 has a slight pattern but, noting

the disparate scale of the two axes, the residuals do not

appear to be practically significant. Figure 4-4 varies

slightly from a normal plot to one indicating a heavy-tailed

distribution. Given the frequency that zero flow occurs in

this network, a slightly skewed distribution is not surpris-

ing. Furthermore, the small sample size may also contribute

to the slight departure from normality. Finally, as a matter

of curiosity, all 10000 sample results from the first run in

Table 4-4 were collected to plot the histogram of the maximum

flow distribution shown in Figure 4-5 on the following page.
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Analysis of Response Surface. Given that Eqs (4.1) and

(4.2) accurately describe the response surface of Network C

maximum flow, several insights into this network's perfor-

mance are available.

First, any improvement in network maximum flow should

focus on getting more information from the source nodes to

Node 8. This is clearly demonstrated by the fact that three

of the five significant parameters are the capacities of arcs

incident to the source nodes. This occurs in spite of the

fact that ten arcs from Nodes 8 and 9 to the sink nodes were

screened for both capacity and survival rate. Apparently,
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the network flow is diverse enough after Nodes 8 and 9 to

insure that some flow will get through.

A second useful observation is obtained by comparing the

response surface of expected maximum flow to that of network

reliability. Following the same procedure used for finding

Eqs (4.1) and (4.2), the uncoded version of the network

reliability response surface (in percentages) is given by the

first-order polynomial

Y = 62.84 + 9.4(N8p) + .94(N9p) + .71(A8-31p) (4.3)

The insight provided by this response surface is the over-

whelming influence of Node 8 on network reliability (which is

probably due to the node's position in the network). Appa-

rently, flow from the source nodes arrives often enough

(though in not enough quantity) that if Node 8 survives, then

at least one of the sink nodes will receive flow as well.

Since Node 8 is also the second most influential component in

the maximum flow response surface, any improvement in it will

produce increased network performance in both areas.

Comparing the two response surfaces leads to one final

observation of the relationship between maximum flow and

network reliability. Simply stated, the two responses

estimate two very different types of network performance -

one the average quantity of flow, and the other how often any

amount of flow gets through. Therefore, the choice of

response variable should reflect the type of network improve-
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ment being sought; i.e., the measure of network performance

should also be the measure of network effectiveness. (Since

the two estimates compliment each other, and because MAXFLO

routinely calculates both of them, the author recommends

considering both measures.)

The previous observations are examples of one type of

analysis provided by RSM called descriptive analysis, where

the polynomial approximation of the response surface is

studied within the context of gaining insight to the net-

work's performance and component interaction. Another type

of analysis is prescriptive analysis, where the response

surface polynomial is used to prescribe or recommend a course

of action. A typical application of the second type of

analysis would involve the response surface equation as the

objective function in an optimization model. The following

example illustrates this important feature.

Assume we wish to maximize the expected maximum flow of

Network C as described by Eq (4.2), subject to the following

constraints:

1. The cost of hardening nodes 8 and 9 is $10k per .1
unit of P. The total cost of hardening cannot
exceed $15k.

2. The cost of increasing arc capacity for A2-8c, A3-
8c, and A5-8c is $5k per 100 units. The total cost
of increased capacity cannot exceed $150k.

3. The total cost of improvement cannot exceed $16Ok.

4. Eq (4.2) is valid only for the region of space
defined by the experimental design. Therefore, the
five components' values are implicitly bound by the
uncoded values given in Table 4-4.
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Let the improvement variables He and H, represent the amount

of hardening for nodes 8 and 9; and, C,_,, C3-, and C,__ the

increase of capacity for arcs A2-8c, A3-8c, and A5-8c,

respectively. Since the coefficients of Eq (4.2) are

applicable to both the original, uncoded variables and the

improvement variables, the objective function can be re-

written for just improvement variables (minus the intercept

term). Thus, a linear programming formulation that maximizes

network maximum flow subject to the listed constraints is

Maximize Z = 2234.389(H,) + 1299.763(H,) + .144(C,_,)

+ .380(C,-,) + .268(C,-,) (4.4)

subject to

He + H. -< .15

C-f + C. + C,-. 5 3000

100(H,) + 100(H,) + .05(C,_,) + .05(C,_) + .05(C.-,) 5 160

(4.5)

and

0 5 He -5 .16 0 5 H S .16

0 5 C2_A 5 1200 0 5 C_ - S 1200 0 5 Ca._ 5 900.

(4.6)

The three inequalities in (4.5) formulate the cost restric-

tions of Items (1), (2), and (3) respectively, while the
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constraints In (4.6) reflect the implicit bounds of the

design space mentioned in Item (4).

Using standard linear programming techniques, the

optimal solution for this sample problem is 1147.558, where

He = .15, He = 0.0, C 2 _e = 800, Ca-0 = 1200, and C'_' = 900.

Adding the intercept to the optimal flow improvement gives an

estimated maximum flow of the improved network of 2227.475.

As a further enhancement, multiple optimization is possible

by using Eqs (4.2) and (4.3) as the goals in a goal program-

ming formulation. (For additional explanations of linear pro-

gramming and multiple optimization techniques, see Hillier

and Lieberman (1986:Ch 3) or Chvatal (1980).)

The previous experimental designs and response surface

equations should also provide excellent guidance for select-

ing nodes for the control subset. This concept, as well as

variance reduction tests on the other two networks, are

covered in the following section.

Control Variate Results

The selection of control variates and subsequent tests

for variance reduction is simple and straight-forward. Those

nodes whose positions in the network indicate that a large

correlation between survival rate and network performance may

exist are chosen for the control subset. Since MAXFLO

automatically calculates variance and confidence intervals

for both normal and control variate estimates of maximum

4-21



flow, testing is simply a matter of running the simulation.

The one restriction is that MAXFLO only accepts independent

nodes for the control subset.

Since a response surface analysis of Network C was just

presented, this section -)ill begin with the control variate

experiments of that network. Of particular interest is a

comparison of the influential and insignificant nodes in the

response surface to the variance reduction they offer when

part of the control subset. Subsequent sections report the

control variate experiments on Networks A and B.

Network C. The original screening design In Table 4-1

looks at six nodes (N8, N9. N1O, Nl, N13, N14), whose

position in Figure 4-2 indicates a possibly strong influence

on expected maximum flow. Subsequent research found that

only two, N8 and N9, are significant. Therefore, it stands

to reason that these same two nodes will provide the largest

variance reduction in the estimated maximum flow. Table 4-6

on the following page shows the results of various nodes in

the control subset for a 10000 sample size simulation at

design point 1 of Table 4-4.

As expected, Nodes 8 and 9 significantly reduce the

variance of the estimated maximum flow and slightly adjust

the point estimate of maximum flow downward. Clearly, Node

8 offers the best single-node control set reduction of 22%

from the uncontrolled estimate, while Node 9 is a distant

second with a variance reduction of 4%. Combined, Nodes 8
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Table 4-6. Variance Reduction of Estimated Maximum
Flow for Network C

Nodes in Estimated 95% Conf.
Control Subset Maximum Flow Variance Interval

0 1169.152 1214.264 23.800

8 1168.604 943.087 18.483
9 1164.596 1162.458 22.786

8,9 1161.518 925.328 18.137

10 1169.202 1214.289 23.801
11 1168.862 1213.998 23.795
13 1169.171 1214.289 23.804
14 1169.170 1214.320 23.800

and 9 reduce the variance from the uncontrolled estimate by

slightly under 24%. By contrast, Nodes 10, 11, 13, and 14

have no discernable affect on variance when included in the

control subset.

The relative value of the nodes in variance reduction

appears to parallel their influeAce in the experimental

designs of the preceding section. Therefore, it seems that

response surface techniques can be applied in selecting nodes

for the control subset. Furthermore, as a topic for further

research, the reverse procedure may also hold true; that is,

nodes producing significant variance reduction will also

influence the estimated maximum flow response surface. (This

assumes uniformity of effect across all design points.) If

so, testing nodes (and arcs) for variance reduction may be a

more efficient way to screen factors than Plackett-Burman
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designs. (Additional selection procedures are also available

without using RSM; specifically stepwise and all regression.

For further information, see Bauer (1987) or Draper and Smith

(1981:Ch 6).)

Network A. Figure 4-6 on the following page shows the

topology of Network A, while the link list is given in

Appendix A. This network differs from Network C in that

several nodes and arcs are dependent on the survival rates of

other nodes and arcs. Table 4-7 shows the variance reduction

for several independent nodes selected for their position in

the network. (Note that Figure 4-6 and Table 4-7 use original

node numbers; i.e., prior to using a dummy source node and

arc equivalents. Also, this network has 63 paths and 64

proper cuts.)

The results are not as impressive as those for Network

C. Nodes 14 and 15 provide the best variance reduction with

10% off the uncontrolled results, while Node 14 is a close

Table 4-7. Variance Reduction of Estimated Maximum
Flow for Network A

Nodes in Estimated 95% Conf.
Control Subset Maximum Flow Variance Interval

0 618.960 1526.244 29.914

14 606.112 1400.871 27.463
15 617.143 1495.116 29.307

14,15 605.314 1370.794 26.873

2,3,4 618.125 1522.272 29.836
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close second with 8%. This is partially due to the fact that

the survival rate of Arcs A1-14 and A4-14 are 1.0, thus

diminishing the correlation of survival rate and maximum flow

for those nodes positioned prior to Node 14.

Network B. Figure 4-7 on the following page shows the

topology for Network B, while the link list is given in

Appendix B. As in Network C, all components in Network B are

independent, and like Network A, the node numbers in Figure

4-7 do not reflect changes due to arc equivalents or dummy

source and sink nodes. This network has 177 paths and 60

proper cuts.

The results of the variance reduction tests are shown

below in Table 4-8. The best reduction is 1% by Node 16.

No other node or set of nodes reduces the variance by any

measurable amount. This lack of significant reduction is

largely due to the presence of three arcs that directly

connect source nodes to sink nodes - A4-24, A6-25, and A6-26.

Table 4-8. Variance Reduction of Estimated Maximum
Flow for Network B

Nodes in Estimated 95% Conf.
Control Subset Maximum Flow Variance Interval

0 353.010 328.045 6.430

16 353.679 325.121 6.373

6 353.010 327.846 6.426
10 352.948 327.231 6.414

4,6 353.071 327.847 6.426
6,10 353.802 327.001 6.410
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Arc 4-24 alone has a capacity of 600 that is operative, on

average, 50% of the time, thus contributing an expected

flowof 300. This accounts for almost 85% of the overall

maximum flow estimated by MAXFLO, thereby negating the influ-

ence of node survival on network performance. Thus, a strong

case exists for including arc controls in future studies.

Control Variate Analysis. The previous results show a

wide range of effectiveness in reducing the variance of the

estimated maximum flow. Apparently, the ability of a control

subset to reduce the variance is a function of network

topology, and the network components' survival rates and

capacities. This observation, of course, implies that a

simple, significant, workable function of nodes does exist

for use as an internal control variate.

The variance reduction shown in this paper is signifi-

cant considering that only nodal scalar variables were

investigated. Based on these results, further research into

using both nodal and arc based controls should provide even

larger reductions. All three networks indicate that arcs, to

a various extent, influence network performance. Therefore,

these components should be included in any further research

of variance reduction of estimated flow of stochastic binary

networks.

Finally, not only is RSM a powerful and insightful tool

for stochastic network analysis, but strong empirical

evidence is made for a unique relationship between the
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maximum flow response surface and control variate perfor-

mance. Indeed, this correlation may even be more pronounced

if true multiple control variates are compared to the

response surface equations. Further research in this area

seems promising, particularly in the area of improving the

efficiency of experimental design screening.
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V. Conclusions and Recommendations

This chapter presents a brief summary of this study's

results and makes recommendations for future research.

Conclusions

This research offers several substantial improvements in

analyzing stochastic binary network performance and improve-

ment strategies. First, a simulation algorithm using proper

cutsets for estimating maximum flow and reliability was

developed to take advantage of networks that have fewer

proper cuts than simple paths. The FORTRAN based program,

called MAXFLO, also incorporates optional antithetic random

number streams; variable simulation sample sizes; user-

defined control variates; user-defined network component

dependencies; automatic mean, variance, and confidence

interval calculations for the estimated expected maximum

flow; a point estimator for network reliability; options for

saving and iuading network cutsets; and options for examining

and changing network parameters. The code was compiled and

run on VAX mainframes and SUN workstations under VMS, UNIX,

and SunOS operating systems. Thus, a high degree of porta-

bility was achieved among ANSI FORTRAN 77 environments.

Second, a simple function of nodes for use as internal

control variates is shown to be a new, workable class of

controls. The control variate experiments on three networks
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demonstrate that variance reduction as high as 24% is

possible with a simple scalar measure of the expected number

of surviving nodes in a selected group. Furthermore, closer

analysis of the networks indicates that the use of arc

variables as multiple controls appears very promising and

warrants further research. Finally, empirical evidence

suggests a node's utility as a control variate can be

incorporated as an additional screening tool for experimental

designs estimating the maximum flow response surface.

Finally, RSM was shown to be a powerful technique for

analyzing and improving stochastic binary network perfor-

mance. RSM provides a clear algebraic description of network

flow and reliability, and how individual components influence

its performance (as demonstrated by two example networks

analyzed in this study). Moreover, the resulting polynomial

equations provide a solid basis for use in optimization

models. For example, the response surface equation can be

used as an objective function in a linear programming model,

subject to various constraints such as cost, survivability

limitations, and network capacity restrictions. In short,

RSM provides a method for rationally modelling the unpredict-

able and complicated behavior of a stochastic binary network.
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Recommendations

In the process of meeting the objectives and answering

the quest-ins posed by this thesis, new questions were raised

in regard to stochastic binary networks, and the areas of

simulation, control variates, and RSM. The following list

of future research recommendations summarizes the issues

raised in this study.

First, the following items in simulation need further

investigation:

1. Conduct a comparison of the pathset /labeling and
the cutset algorithms in terms of simulation speed
and efficiency. One valuable outcome of this re-
search would be a heuristic guide for when to use
one method over the other.

2. Research the effect of antithetic random number
streams and antithetic pairs on maximum flow and
reliability estimators: and, most importantly, on
bias reduction.

3. Examine the use of stratified sampling as a method
of reducing inherent bias due to unlikely network
topologies.

4. Develop faster, more efficient algorithms for Monte
Carlo simulation, and port the program to a micro-
computer environment. Specific areas of improvement
include sorting the cutset by likelihood of failure
and more efficient storage of pathset and cutset
files.

5. Expand the model to include multiple arcs between
nodes. A further enhancement would be to expand
simulation capability to include randomly capaci-
tated components.

6. Explore the relationship of maximum flow and
reliability across different network topologies.
Further define their complementary nature, and
perhaps extend this research to other measures of
network performance.
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Second, the following areas of control variates and

variance reduction need further research:

1. Discover if additional variance reduction occurs
if arc, as well as node, survival rates are placed
in the control subset; and if so, how much.

2. Expand Item (1) from a scalar control to multiple
controls, and compare results for any additional
variance reduction.

3. Compare variance reduction results to current
efforts in this area; specifically, those by
Fishman (1983).

Finally, the following items of RSM warrant further

research:

1. Investigate the advantages or disadvantages of
using the Schruben-Margolin assignment rule for
experimental designs of stochastic networks.

2. Expand RSM to other measures of network perfor-
mance, i.e. shortest path.

3. Examine the feasibility of using control variates
as a screening methodology in conjunction with, or
as a substitute for, traditional screening designs.

4. Develop a "hybrid" screening design using both
factor and group screening techniques as a method
for examining all possible network variables.

5. Conduct further experiments on a variety of
stochastic networks. Particularly, employ the
response surface polynomials in other optimization
models for specific problems.

5-4
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Appendix A: Network A Link List

Probability

Component of Survival Capacity

NI 1.0

N2 .3

N3 .7
N4 .5

N5 .8

N6 1.0
N7 .3

N8 .7
N9 .5

NIO .8

N11 1.0
N12 .3

N13 .7

N14 .5
N15 .8

N16 1.0
N17 .3
NIS .7

N19 .5 -
Al-12 1.0 1200
A1-13 1.0 1200
A1-14 1.0 1200
A2-14 .6 1200
A2-5 .3 1200

A5-10 .6 1200
A5-11 .7 1200
A3-11 1.0 1200
A3-9 1.0 1200

A4-14 1.0 1200
A7-14 .6 4800
A8-14 .3 4800
A6-14 .6 4800

A12-15 .7 4800
A13-15 1.0 4800
A9-15 1.0 4800

All-15 1.0 4800
A10-15 .6 4800
A15-6 .3 4$00
A15-7 .6 4800
A15-8 .7 4800

A14-19 1.0 4800
A14-18 1.0 4800
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Probability
Component of Survival Capacity

A14-17 1.0 4800
A17-16 .6 4800
A18-16 .3 4800
A19-16 .6 4800

Dependent Nodes and Arcs

Independent Dependent
Component Components

NB N17
N15 N16
N7 NIS
N6 N19

A15-6 A19-16
A15-7 A18-16
A15-8 A17-16
A6-14 A14-19
A7-14 A14-18
A8-14 A14-17
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Appendix B: Network B Link List

Probability
Component of Survival Capacity

Ni .70 -
N2 .15 -
N3 .03 -

N4 1.00 -
N5 1.00 -
N6 .04 -
N7 .40 -

NS 1.00 -
N9 .01 -

N10 .70 -

Nl .11 -
N12 1.00 -

N13 .06 -

N14 .09 -
N15 .18 -
N16 .07 -
N17 1.00 -
N18 1.00 -
N19 1.00 -
N20 1.00 -
N21 1.00 -
N22 1.00 -
N23 1.00 -
N24 1.00 -
N25 1.00 -
N26 1.00 -

A1-7 .80 150
A1-8 .80 200
A2-8 .50 750
A2-9 .50 750
A3-7 .80 200
A3-9 .50 750

A3-16 .60 150
A4-16 .80 200
A5-14 .80 1200
A6-16 .50 1200
A6-25 .60 75
A6-26 .60 75
A7-10 .50 1200
A8-10 .70 1200
A9-10 .50 2400

A10-11 .50 1200
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Probability

Component of Surv1val Capacity

A10-12 .70 1200
A10-13 .70 1200
All-17 .50 1200
Al1-18 .50 75
Al1-19 .50 1200
A12-20 .50 1200
A12-16 .70 1200
A13-16 .70 600
A14-15 .80 1200
A15-16 .80 1200
A16-17 .60 75
A16-18 .60 75
A16-19 .60 75
A16-20 .60 75
A16-21 .60 75
A16-22 .60 75
A16-23 .60 75
A16-24 .60 75
A16-25 .60 75
A16-26 .60 75

Dependent Nodes and Arcs

ALL NODES AND ARCS ARE INDEPENDENT
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Appendix C: Network C Link List

Probability
Component of Survival Capacity

Ni .3
N2 .7
N3 .5
N4 .8
N5 1.0
N6 .3
N7 .7
N8 .5
N9 .8

N10 1.0
Nil .7
N12 .7
N13 .5
N14 .8
N15 1.0
N16 .3
N17 .7
N18 .5
N19 .8
N20 1.0
N21 .3
N22 .7
N23 .5
N24 .8
N25 1.0
N26 .3
N27 .7
N28 .5
N29 .8
N30 1.0
N31 .3
N432 .7
N33 .5
N34 .8
N35 1.0
N36 .3
N437 .7
N38 .5
1439 .8

Al-il .9 1200
A2-11 1.0 2400
A3-7 1.0 1200
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Probability
Component of Survival Capacity

A4-11 .6 300
A5-8 .3 1200
A6-9 .6 1200

A7-10 .7 300
A8-11 .9 1200
A9-11 1.0 300
A10-11 1.0 300
Al1-12 .9 9600
All-23 .6 75
All-24 .3 75
All-38 .6 1200
All-39 .7 1200
A12-13 1.0 4800
A12-14 1.0 4800
A12-15 .6 4800
A12-16 .3 4800
A12-17 .6 4800
A12-18 .7 2400
A12-19 .9 4800
A12-20 1.0 4800
A12-21 1.0 4800
A12-22 .6 2400
A13-23 .3 4800
A13-24 .6 4800
A13-25 .7 2400
A13-26 .9 1200
A13-27 1.0 1200
A13-28 1.0 1200
A13-29 .3 1200
A14-23 .6 4800
A14-24 .3 4800
A14-25 .6 2400
A14-26 .7 1200
A14-27 .9 1200
A14-28 1.0 1200
A14-29 1.0 1200
A15-31 .6 2400
A15-32 .3 1200
A16-30 .6 300
A16-31 .7 2400
A16-32 .9 1200
A16-33 1.0 300
A16-36 1.0 2400
A17-30 .6 1200
A17-33 .3 300
A17-34 .6 300

C-2



Probability
Component of Survival Capacity

AI8-38 .7 1200
A19-39 ,.9 1200
A20-35 1.*0 2400
A21-36 1.0 2400
A22-37 .6 600

Dependent Nodes and Arcs

ALL NODES AND ARCS ARE INDEPENDENT
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Appendix D: MAXFLO FORTRAN Source Code

PROGRAM MAXPLO
*

* VERSION 1.0
*

* MAXIMUM FLOW AND NETWORK RELIABILITY
* MONTE CARLO SIMULATION CODE

* DESIGNED AND WRITTEN BY CAPTAIN THOMAS GLENN BAILEY
* AS PART OF THESIS AFIT/GOR/88D-01 NOVEMBER 1988

* VARIABLE DEFINITIONS

* GLOBAL

AC - MAX NUMBER OF ARCS
* ADEPEND(AC) - ARC DEPENDENCIES ARRAY
* APROB(AC) - ARC SURVIVAL PROB. ARRAY
* CONTROL(ND) - CONTROL VARIATE ARRAY
* CUT(RW,AC) - PROPER CUTSET ARRAY
* DEPEND(ND) - NODE DEPENDENCIES ARRAY
* HEAD(AC) - DESTINATION NODE FOR
*CUT(-,AC)

* MUC - EXPECTED VALUE OF CONTROL

* N - CURRENT NUMBER OF ARCS
* ND - MAX NUMBER OF NODES

* NDTOT - CURRENT NUMBER OF NODES
* NPROB(ND) - NODE SURVIVAL PROB. ARRAY
* NTAPE - DISK OR TAPE I/O #
* NPRINT - LINE PRINTER #
* P - CURRENT NUMBER OF PATHS
* PATH(RWoAC) - PATHSET ARRAY
* RW - MAX NUMBER OF CUTS OR PATHS
* T - CURRENT NUMBER OF CUTS
* TAIL(AC) - ORIG. NODE FOR CUT(-,AC)
* TCNTL - NUMBER OF NODES IN CONTROL

SUBSET
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*

* MAIN PROGRAM
*

SHOW MENU SELECTION VARIABLE

*

* CUTSET SUBROUTINE
*

* ARCCAP(ND,ND) - NODE/INCIDENCE ARRAY WITH
* ARC CAPACITIES
* C - PREVIOUS COLUMN
* COL(AC) - COLUMN STATUS ARRAY

* CYC - PATH CYCLING FLAG
* FLAG - GENERAL PURPOSE FLAG
* I - ROW POSITION
* INN - CONTAINMENT CHECK
* J - COLUMN POSITION

* K - GENERAL PURPOSE VARIABLE
* L - GENERAL PURPOSE VARIABLE
* M - GENERAL PURPOSE VARIABLE
* MARK(ND,ND) - 'SHADOW' OF ARCCAP(ND,ND)
* RECORDS PREVIOUS PASSAGES
* IN PATH SEARCH ALGORITHM

MATCOL(ND,ND) - 'SHADOW' OF ARCCAP(ND,ND)
* RECORDS PROPER ORDER OF ARCS
* FOR APROB(AC),HEAD(AC), AND
* TAIL(AC) ARRAYS
* OUTT - CONTAINMENT CHECK
* PP - TEMPORARY NUMBER OF PATHS
* R - PREVIOUS ROW
* ROW(RW) - ROW STATUS ARRAY
* SK - DUMMY SINK NODE STATUS
* SR - DUMMY SOURCE NODE STATUS
* XB(RW) - PATHSET INVERSION STATUS
*ARRAY

* XBI(RW) -
* XR(RW) -
* XR1(RW) -

* DIAG SUBROUTINE

* HD, I, J GENERAL PURPOSE VARIABLES
* K, TL
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*i

* SIMULATE SUBROUTINE

* I,J,HK,L - GENERAL PURPOSE VARIABLES

* ANTI - ANTITHETIC RANDOM NUMBER
* STREAM FLAG

* BHAT - ESTIMATED COVARIANCE/CONTROL
* VARIANCE RATIO
* Cl1 - UNCONTROLLED CONF. INTERVAL

* C12 - CONTROLLED CONF. INTERVAL
* CMEAN - MEAN OF NODES IN CONTROL

* SUBSET THAT SURVIVE
* CNTL - NUMBER OF NODES ASSIGNED
* TO CONTROL SUBSET
* COL(AC) - ARC STATUS ARRAY DURING
* SIMULATION
* COVAR - COVARIANCE OF RESPONSE
* TO CONTROL
* CTOT - SUMMATION OF ALL SAMPLES'
* NUMBER OF NODES SURVIVING

* CVAR - CONTROL VARIANCE
* DNODE(ND) - STATUS OF DEPENDENT NODES
* IN CURRENT SIMULATION
* FLAG - RESERVED
* MEAN - RESERVED
* MINCUT - VALUE OF CURRENT CUT IN
* CUTSET OF THE CURRENT
* SIMULATION SAMPLE
* MUY - CONTROLLED POINTE ESTIMATE OF
* RESPONSE
* RDM - CURRENT RANDOM NUMBER DRAW
* RLBL - UNCONTROLLED POINT ESTIMATE

OF NETWORK RELIABILITY
* $- CONTROLLED ESTIMATE OF
* RESPONSE STANDARD DEVIATION
* SEED - RANDOM NUMBER SEED
S SIm - USER-DEFINED SIMULATION

* SAMPLE SIZE (100,000 MAX)

* STAT(SM,2) - SIMULATION'S SAMPLE RESULTS
* VAR - VARIANCE OF UNCONTROLLED
* RESPONSE
* YMEAN - MEAN RESPONSE
* YVAR - VARIANCE OF CONTROLLED
* RESPONSE
* YTOT - SUMMATION OF ALL SAMPLES'
* RESPONSES
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* SAVECUT SUBROUTINE*

* FNAME - CUTSET FILENAME

* I, J=J - GENERAL PURPOSE VARIABLES

* CHGCUT SUBROUTINE

* ARC - ARC NUMBER
* CAP - NEW CAPACITY
* FLAG - NODE CHANGES

* HD - ARC DESTINATION
* IJK - GENERAL PURPOSE VARIABLES
* PROB - NEW PROBABILITY OF SURVIVAL
* TL - ARC ORIGIN

*

* DPND SUBROUTINE
*

* HD - ARC DESTINATION
* I,J,K - GENERAL PURPOSE VARIABLE

* TL - ARC ORIGIN

* MAIN PROGRAM
*

* DEFINITION AND DECLARATION OF VARIABLES

* PARAMETERS

INTEGER AC,RW,NDNTAPE,NPRINT
PARAMETER (RW=1000,AC=80,ND=50,NTAPE=7,NPRINT=8)
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*

* GLOBAL VARIABLES
*

INTEGER NDTOT,N,T,P,TCNTL
INTEGER CUT(RW,AC), PATH(RW,AC), CONTROL(ND)
INTEGER HEAD(AC), TAIL(AC), DEPEND(ND). ADEPEND(AC)
REAL NPROB(ND), APROB(AC)
REAL MUC
COMMON/CUT1/NDTOT,N,TCUT,NPROBAPROBHEAD,TAIL
COMMON/PATH2/PPATH
COMMON/CUT2/MUC,TCNTL,CONTROL
COMMON/CUT3/DEPEND,ADEPEND

* LOCAL VARIABLES

INTEGER SHOW

* MAIN CONTROL MENU

50 PRINT*,'1. Enter Network.'
PRINT*, 2. Save/Retrieve Network.'
PRINT, '3. Simulate.'
PRINT*, 4. Diagnostics.'
PRINT*,'5. Change Network Parameters.'
PRINT*,'6. Enter Node Dependencies.'
PRINT*, 7. Exit.'
READ*,SHOW
IF (SHOW.EQ.1) THEN

CALL CUTSET
ELSE IF (SHOW.EQ.2) THEN

CALL SAVECUT
ELSE IF (SHOW.EQ.3) THEN

CALL SIMULATE
ELSE IF (SHOW.EQ.4) THEN

CALL DIAG
ELSE IF (SHOW.EQ.5) THEN

CALL CHGCUT
ELSE IF (SHOW.EQ.6) THEN

CALL DPND
ELSE IF (SHOW.EQ.7) THEN

GO TO 100
ELSE

GO TO 50
END IF
GO TO 50

100 END
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* RANDOM NUMBER GENERATOR

FUNCTION RANDOM( IX)
INTEGER AP, IX,B15,B16,XHI ,XALOI,LEFTLO,FHI ,K
DATA A/16807/,Bl5/32768/,B16/65536/,P/2147483647/
XHI-IX/B 16
XALO=(IX-XHI*Bl6)*A
LEFTLO=XALO/Bl6
FHI=XHI*A+LEFTLO
IC=FHI/B1 5
IX-(((XALO-LEFTLO*Bl6)-P)4(FHI-K*Bl5)*Bl6)+K
IF(IX.LT.O) IX=IX+P
RANDOM-FLOAT( IX) *4.656612875E-1O
RETURN
END

* NETWORK ENTRY and
* PATHSET AND CUTSET GENERATION SUBROUTINE

SUBROUTINE CUTSET

* PARAMETERS

INTEGER AC,RW,ND
PARAMETER (RW= 1000, AC=80 ,ND=50)

* GLOBAL VARIABLES

INTEGER NDTOT,N,T,P
INTEGER CUT(RW,AC), PATH(RW,AC)
INTEGER HEAD(AC), TAIL(AC)
REAL NPROB(ND), APROB(AC)
COMMON/CUTI/1 PP NT, CUT, NPROB ,APROB, HEAD, TAIL
COMMON/PATH 2/P, PATH
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* LOCAL VARIABLES

INTEGER I,J,R,C,FLAG,CYC
INTEGER ROW(RW), COL(AC)
INTEGER ARCCAP(NDND), MARK(ND,ND), MATCOL(ND,ND)
INTEGER INN,OUTTXR(RW),XR1(RW),XB(RW),XB1(RW)
INTEGER KL,M,PP,SR,SK

* INPUT NETWORK TOPOLOGY

* NODES - IDENTIFY, CAPACITY, SURVIVAL PROBABILITY

PRINT*, 'Please enter the total number of nodes:
READ*, NDTOT
PRINT*, 'Source node ID number must be 1.'
PRINT*., ,
PRINT*, 'Terminal node ID number must equal total

+number of nodes.'
DO 400 I = 1,NDTOT

PRINT*, 'Node ID number: ', I
PRINT*, 'Enter node ',I,' capacity:
READ*, ARCCAP(I,I)
PRINT*, 'Enter node ',I,' probability of

+ survival: I
READ-,NPROB(I)
IF (NPROB(I).GT.I.) NPROB(I) = 1.0
IF (NPROB(I).LT.O.) NPROB(I) = 0.0

400 CONTINUE

* IDENTIFY 'DUMMY' SOURCE AND SINK NODES

SR = 0
SK = 0
PRINT*,'Enter I if source node 1 is a DUMMY node:'
READ*,SR
PRINTS,'Enter I if sink node is a DUMMY node:'
READ',SK

D-7



* ARCS -IDENTIFY, CAPACITY, SURVIVAL PROBABILITY

FLAG =0

420 IF (FLAG.NE.1) THEN
PRINT*, 'Enter 0 to enter arc.'
PRINT*, 'Enter 1 to exit arc entry.'
READ*, FLAG
IF (FLAG.NE.1) THEN
PRINT*, 'Enter arc head:'
READ*, J
PRINT*, 'Enter arc tail:
READ' ,I.
IF (I.GT.NDTOT .OR. J.GT.NDTOT) THEN
PRINT*,'NODE OUT OF RANGE!'
GO TO 420

END IF
PRINT*, 'Enter arc capacity:
READ*, ARCCAP(I,J)
GO TO 420

END IF
END IF

* CALCULATE PATHSET/CUTSET MATRICES COLUMNS

N = 1
DO 428 I = 1,NDTOT

DO 425 J = 1,NDTOT
IF (ARCCAP(I,J).GT.O) THEN
MATCOL(I,J) =N

HEAD(N) = J
TAIL(N) = I

N =N + 1
END IF

425 CONTINUE
428 CONTINUE

NN= 1
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* CALCULATE ALL ACYCLIC PATHS
* FROM NODE 1 (SOURCE) TO NODE NDTOT (SINK)
* (REF: SHIER AND WHITED: IEEE TRANS. ON

* RELIABILITY, OCTOBER 1985)

*
P= 1
I=1j
J = 1 II
FLAG = 0
CYC = 0

430 IF (FLAG.EQ.O) THEN
435 IF (J.LT.NDTOT) THEN

FIND NEXT ARC SEGMENT

R= I
C=J
I=J
J 1

440 IF (ARCCAP(I,J).GT.O.AND.MARK(IJ).EQ.0
+ .AND.I.NE.J.OR.J.GT.NDTOT) THEN

GO TO 445
ELSE

J = J + 1
GO TO 440

END IF

RECORD ARC SEGMENT

445 IF (MATCOL(I,J).GT.0)
+ PATH(PMATCOL(I,J)) = ARCCAP(I,J)

IF (ARCCAP(I,I).GT.O)
+ PATH(P,MATCOL(I,I)) = ARCCAP(II)

MARK ROW(I) TO GUARD AGAINST CYCLING

IF (ROW(I).EQ.1) THEN
J = NDTOT + I
CYC = 1

END IF
ROW(I) = 1

GO TO 435
END IF

MARK SEGMENT

MARK(R,C) = I
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CLEAR MARK

IF (I.GT.1.AND.CYC.EQ.O) THEN
DO 460 L = 1,NDTOT

MARK(IL) = 0
460 CONTINUE

END IF

DETERMINE IF PATH EXISTS

IF (J.EQ.NDTOT) THEN
PP+ 1
CALL ENDSNODE(I,J,NDTOT,FLAG,CYCROW)

ELSECALL ENDSNODE(I,J,NDTOT,FLAG,CYC,ROW)

DO 465 M = 1,AC
PATH(PDM) = 0

465 CONTINUE
END IF
I=1

GO TO 430
END IF
P=P- 1

* ELIMINATE DUMMY SOURCE AND DUMMY SINK NODES

IF (SR.EQ.1) THEN
DO 475 J = 1,N

IF (TAIL(J).EQ.1) THEN
DO 470 I = 1,P
PATH(IJ) = 0

470 CONTINUE
END IF

475 CONTINUE
END IF

IF (SK.EQ.I) THEN
DO 485 J = i,N

IF (HEAD(J).EQ.NDTOT) THEN
DO 480 I = 1,P
PATH(IJ) = 0

480 CONTINUE
END IF

485 CONTINUE
END IF
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REDUCE PATH MATRIX

* ZERO OUT ROW(x) AND COL(x) ARRAYS

DO 500 I - 1,RW
ROW(I) - 0

500 CONTINUE

DO 510 J = 1,AC
COL(J) = 0

510 CONTINUE

* IDENTIFY ZERO COLUMNS IN PATH MATRIX

DO 550 J =1,N

I 1
535 IF (PATH(I,J).GT.0.OR.I.GT.P) THEN

GO TO 540
ELSE

I1=I+ 1
GO TO 535

END IF
540 IF (I.GT.P) COL(J) =1

550 CONTINUE

* PACK PATH MATRIX

J= 1
555 IF (J.LE.N) THEN

IF (COL(J).EQ.1) THEN
DO 570 K - J.N

DO 560 I = 1,P
PATH(I,K) =PATH(I,K+l)

560 CONTINUE
COL(K) =COL(K+1)

HEAD(K) =HEAD(K+l)

TAIL(K) =TAIL(K+1)

APROB(K) = APROB(K+l)
570 CONTINUE

N=N - 1
GO TO 555

ELSE
J=j + 1
GO TO 555

END IF
END IF
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* ENTER ARC PROBABILITIES

DO 650 I1 1,N
PRINT*,1 Enter arc probability of survival for

+ arc',I
PRINT*,'HEAD:' ,HEAD(I)
PRINT, 'TAIL:' ,TAIL(I)
READ* ,APROB(I)
IF (APROB(I).GT.1.) APROB(I) = 1.0
IF (APROB(I).LT.O.) APROB(I) = 0.0

650 CONTINUE

* CALCULATE MIN-CUTS

* INITIALIZE MATRIX

DO 710 J3 1, N
IF (PATH(1,J).GT.O) THEN

T =T + 1
CUT(T,J) = PATH(1,J)

END IF
710 CONTINUE

* LOOP CONTROL FOR MULTIPLYING PATH POLYNOMIAL
* CLEAR SW3 DATA ARRAYS

PRINT*,'THERE ARE THIS MANY PATHS:',P

DO 890 PP =2, P

DO 720 I 1,RW
ROW(I) 0
XB(I) 0
XB1(I) 0
XR(I) -0
XR1(I) =0

720 CONTINUE

DO 730 J =1,N
COL(J) =0

730 CONTINUE
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* DETERMINE XR AND XR1 MEMBERS OF A

DO 750 J = 1,N
IF (PATH(PP,J).GT.O) THEN

DO 740 I = 1,T
IF (PATH(PP,J).EQ.CUT(I.J)) THEN

XR(I) = XR(I) + 1
XR1(I) = J

END IF
740 CONTINUE

END IF
750 CONTINUE

* MARK COLUMN OF PATH TO INDICATE XR1

DO 760 I = 1,T
IF (XR(I).EQ.1) THEN
COL(XR1(I)) = 3

END IF
760 CONTINUE

*

* DETERMINE XB
*

DO 770 I = 1,T
DO 765 3 = 1,N

IF (CUT(I,J).GT.0) THEN
XB(I) = XB(I) + 1
XB1(I) = J

END IF
765 CONTINUE
770 CONTINUE

DO 775 I = 1,T
IF ( (XB(I).EQ.1).AND.(PATH(PPXB1(I)).GT.0)) THEN

COL(XB1(I)) = 1
ELSE

XB(I) = 0

END IF
775 CONTINUE

MULTIPLY PATH TO CUTSET

TT = T
DO 795 3 = 1,N
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* AVOID XB INa

IF ((PATH(PP,J).GT.O).AND.(COL(J).NE.1) )THEN
DO 790 I = 1,TT

* AVOID XBXRXR1 IN A

IF ((XR(I).EQ.O).AND.(XB(I).EQ.O)) THEN
T T+ 1
DO 780 L = 1DN

CUT(T,L) = CUT(I,L)
780 CONTINUE

CUT(T,J) = PATH(PP,J)

*IDENTIFY RESIDUAL XR1 IN A

IF (COL(J).EQ.3) THEN
XRI(T) = J

END IF
END IF

790 CONTINUE
END IF

795 CONTINUE

* CHECK FOR XR1 CONTAINMENT

DO 815 J = 1,N
DO 810 I = 1,TT

IF (XR1(I).EQ.J) THEN
DO 805 K = TT + 1,T

IF (XR1(K).EQ.J) THEN
OUTT = 0
INN = 0
L = 1

800 IF (L.LE.N) THEN
IF (CUT(I,L).GT.CUT(K,L)) THEN

OUTT = OUTT + 1
ELSEIF (CUT(K,L).GT.CUT(I,L)) THEN

INN = INN + 1
END IF
IF ( (OUTT.GT.O).AND.(INN.GT.O) ) L =N

L =L + 1
GO TO 800

END IF
IF ((INN.GT.O).AND.(OUTT.EQ.O)) ROW(K) =1

END IF
805 CONTINUE

END IF
810 CONTINUE
815 CONTINUE
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* MOVE XB,XR,XR1 TERMS INTO A

DO 825 1 = 1,TT
IF C(XR(I).GT.O).OR.(XB(I).GT.O) )THEN

T=T + 1
DO 820 J = 1,N

CUT(T,J) = CUT(I,J)
820 CONTINUE

END IF
825 CONTINUE

* MOVE A TO TOP OF CUT MATRIX

K - 1
DO 835 I = TT + 1,T

DO 830 J = 1,N
CUT(K,J) = CrJT(I,J)

830 CONTINUE
ROW(K) = ROW(I)
K = K+ 1

835 CONTINUE

* PACK CUT

I

840 IF (I.LE.T) THEN
IF (ROW(I).GT.0) THEN

DO 850 K = 1+1,T
DO 845 J = 1,N
CUT(K-1,J) = CUT(K,J)

845 CONTINUE
ROW(K-1) =ROW(K)

850 CONTINUE
I = I-I
T =T- 1

END IF
I1= I+
GO TO 840

END IF

890 CONTINUE
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REMINDER OF NODE AND ARC DEPENDENCIES

PRINT*,'REMINDER: IF NODE OR ARC DEPENDENCIES EXIST,
+ENTER THEM'
PRINT*0'SEPARATELY USING ITEM (6) IN MAIN MENU.'

END

.
*

* SUBROUTINE ENDSNODE

SUBROUTINE ENDSNODE(IJ,NDTOT,FLAG,CYC,ROW)

*

* PARAMETER
*

INTEGER RW
PARAMETER (RW=1000)

*

* ARRAY DECLARATION

INTEGER M
INTEGER ROW(RW)

IF (I.EQ.1.AND.CYC.EQ.1.AND.J.EQ.NDTOT) THEN
FLAG = 1

END IF
IF (I.EQ.1.AND.CYC.EQ.O.AND.J.GE.NDTOT) THEN

FLAG = 1
END IF
DO 590 M = 1,NDTOT

ROW(M) = 0
590 CONTINUE

CYC = 0
END

D-16



* NETWORK PARAMETERS DIAGNOSTIC SUBROUTINE

SUBROUTINE DIAG

* PARAMETERS

INTEGER ACPRW,ND
PARAMETER { RW=1000, AC=80.ND=50)

* GLOBAL VARIABLES

INTEGER NDTOT,N,T,PTCNTL
INTEGER CUT(RW,AC), PATH(RW,AC), CONTROL(ND)
INTEGER HEAD(AC), TAIL(AC), DEPEND(ND), ADEPEND(AC)
REAL NPROB(ND), APROB(AC), MUC
COMMON/CUT 1/NDTOT,N, T, CUT, NPROB, APROBHA,TI
COMMON/PATH2/P,PT
COMMON/CUT2 /MUC, TCNTL, CONTROL
COMMON/CUT3/DEPEND,ADEPEND

* LOCAL VARIABLE

INTEGER SHOWDI,J,K,HD.TL

600 PRINT*.,hl. Show pathset (Not available if cutset
+retrieved).'1
PRINT*,12. Show cutset.'
PRINT*. '3. Show individual network components.'
PRINT*,14. Show control variate subset.'
PRINT*.,5. Show node and arc dependencies.'
PRINT*, 16. Exit diagnostics.'
READ* ,SHOW
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IF (SHOW.EQ.1) THEN
GO TO 910

ELSEIF (SHOW.EQ.2) THEN
GO TO 920

ELSEIF (SHOW.EQ.3) THEN
GO TO 610

ELSEIF (SHOW.EQ.4) THEN
GO TO 700

ELSEIF (SHOW.EQ.5) THEN
GO TO 800

ELSEIF (SHOW.EQ.6) THEN
GO TO 990

ELSE
GO TO 600

END IF

SHOW INDIVIDUAL NETWORK PARAMETERS

610 PRINT*,'Enter 0 for node.'
PRINT*,'Enter 1 for arc.'
PRINT*,'Enter 2 to return to menu.'
READ*,SHOW

IF (SHOW.EQ.0) GO TO 630
IF (SHOW.EQ.1) GO TO 670
IF (SHOW.EQ.2) GO TO 600
GO TO 600

SHOW NODE PARAMETERS

630 PRINT*,'Enter node.'
READ*,K
IF (K.GT.NDTOT .OR. K.LE.O) THEN

PRINT*,INODE DOES NOT EXIST'
GO TO 610

END IF

DETERMINE IF NODE IS CAPACITATED

J= 0
1=1

635 IF (I.LE.N) THEN
IF (HEAD(I).EQ.K .AND. TAIL(I).EQ.K) THEN

J= I
I =N

END IF
I=I+1
GO TO 635

END IF
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SHOW =0

IF (J.GT.O) THEN

640 IF (I.LE.T) THEN
IF (CUT(I,J).GT.O) THEN

SHOW = CUT(I,J)
I = T

END IF
I1=I+1
GO TO 640

END IF
ELSE

SHOW = 0
END IF

PRINT*, 'NODE:' ,K
PRINT*, 'CAPACITY: ',SHOW
PRINT*,'PROB. OF SURVIVAL:' ,NPROB(K)
GO TO 610

* SHOW ARC PARAMETERS

670 PRINT*,'Enter arc head.'
READ* ,HD
PRINT*,'Eriter arc tail.'
READ*,TL
J 0
1 1

675 IF (I.LE.N) THEN
IF (HEAD(I).EQ.HD .AND. TAIL(I).EQ.TL) THEN

J= I
I N

END IF
I =I+ 1
GO TO 675

END IF

IF (J.EQ.O) THEN
PRINT, 'ARC DOES NOT EXIST!'
GO TO 610

END IF

SHOW =0

I=1
680 IF (I.LE.T) THEN

IF (CUT(I,J).GT.0) THEN
SHOW =CUT(I,J)

I = T
END IF
I I +1
GO TO 680

END IF
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PRINT*,'Arc head:1,HD
PRINT*,'Arc tail:',TL
PRINT*,'Capacity:' ,SHOW
PRINT*, 'Probability of survival:' DAPROB(J)
GO TO 610

* SHOW CONTROL VARIATE SUBSET

700 PRINT*,'Expected number of nodes in subset to
+survive: ',MUC
PRINT*,'Total number of nodes in control

+subset: ',TCNTL

DO 710 1 - 1,NDTOT
IF (CONTROL(I).EQ.1) PRINT*,I

710 CONTINUE

GO TO 600

* NODE/ARC DEPENDENCY MENU

800 PRINT*,'Enter 0 for node dependencies.'
PRINT*I'Enter 1 for arc dependencies.'
PRINT*,lEnter 2 to return to menu.'
READ* ,I

IF (I.EQ.O) GO TO 805
IF (I.EQ.1) GO TO 840
IF (I.EQ.2) GO TO 600
GO TO 800

* SHOW NODE DEPENDENCIES

805 DO 830 I - 1,NDTOT

K= 0
J= 1

810 IF (J.LE.NDTOT) THEN
IF (DEPEND(J).EQ.I) THEN
K= I
J =NDTOT

END IF
J = J+ I
GO TO 810

END IF
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IF (K.GT.0) THEN
PRINT*,'The following nodes are dependent.'
DO 820 J = NDTOT,I,-1

IF (DEPEND(J).EQ.K) PRINT*,J
820 CONTINUE

PRINT*,K
PRINT*,'
PRINT*,'Enter any number to continue:'
READ*,SHOW

END IF

830 CONTINUE
GO TO 800

SHOW ARC DEPENDENCIES

840 DO 890 I = 1,N

K=0
J= 1

850 IF (J.LE.N) THEN
IF (ADEPEND(J).EQ.I) THEN
K= I
J=N

END IF
J=J+ 1
GO TO 850

END IF

IF (K.GT.0) THEN
PRINT*,'The following arcs are dependent.'
DO 860 J = N,1,-1

IF (ADEPEND(J).EQ.K) THEN
PRINT*,'HEAD:',HEAD(J)
PRINT*,'TAIL:',TAIL(J)
PRINT*,'

END IF
860 CONTINUE

PRINT*,'HEAD:',HEAD(K)
PRINT*,'TAIL:',TAIL(K)
PRINT*,' I
PRINT*,'Enter any number to continue:'
READ*,SHOW

END IF

890 CONTINUE
GO TO 800

D-21



* SHOWPATH

910 PRINT*,'Enter path number'
READ*, I
PRINT*,'There are 1,P,.' paths.'

PRINT*,'Path No.',I
DO 915 J - 1,N

IF (PATH(I,J).GT.O) PRINT*,TAIL(JLI' ',HEAD(J)
915 CONTINUE

GO TO 600

* SHOWCUT

920 PRINT*,IEnter cut number'
READ*,*I
PRINT*,vThere are ',T,' cuts.'
PRINT*,ITAI~l ','HEAD',-' ,-CAPACITY',' 1,'PROB'

PRINT*,'Cut No.',I
DO 925 J3 1,N

IF (CUT(I,J).GT.O) THEN
PRINT*,TAIL(J).' ',HEAD(J),' 1,CUT(lIJ),'

+ ',APROB(J)
END IF

925 CONTINUE
GO TO 600

990 END
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* CUTSET FILE SAVE AND RETRIEVAL SUBROUTINE

SUBROUTINE SAVECUT

* PARAMETERS

INTEGER AC,RW,ND,NTAPE,NPRINT
PARAMETER (RW=1000,AC=80,ND=50,NTAPE=7 ,NPRINT=8)

* GLOBAL VARIABLES

INTEGER NDTOT,N, T, TCNTL
INTEGER CUT(RW,AC), CONTROL(ND), ADEPEND(AC)
INTEGER HEAD(AC), TAIL(AC), DEPEND(ND)
REAL NPROB(ND), APROB(AC), MUC
COMMON/CUT 1/NDTOT ,N,T, CUT, NPROB, APROB,HEAD, TAIL
COMMON/CUT2 /MUC ,TCNTL, CONTROL
COMMON/CUT 3/DEPEND, ADEPEND

* LOCAL VARIABLES

CHARACTER*8 FNAME
INTEGER I,J

* MENU

10 PRINT*,'Enter 0 to Save Enter 1 to Retrieve Enter
+2 to Exit'
READ* ,I

IF (I.EQ.O) THEN
GO TO 30

ELSEIF (I.EQ.1) THEN
GO TO 100

ELSEIF (I.EQ.2) THEN
GO TO 220

ELSE
GO TO 10

END IF
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* SAVE CUTSET

30 PRINT*,'Enter Cutset Filename to Save:'
READ*, FNAME

OPEN (UNIT=NTAPE,FILE=FNAME, STATUS=' NEW' ,ERR=199)

.WRITE (NTAPE,185,ERR=199) NDTOT,N,T

DO 50 I - 1,NDTOT
WRITE (NTAPE,188,ERR=199) NPROB(I), DEPEND(I)

50 CONTINUE

DO 55 J =1,N
WRITE (NTAPE, 187,ERR=199)

+ APROB(J),TAIL(J)LHEAD(J),ADEPEND(J)
55 CONTINUE

DO 65 I = 1,T
DO 60 J = 1,N
WRITE (NTAPE,184,ERR=199) CUT(I,J)

60 CONTINUE
65 CONTINUE

GO TO 180

* RETRIEVE CUTSET

100 PRINT*,'Enter Cutset Filename to Retrieve:'

READ'*,FNAME

OPEN (UNIT=NTAPE, FILE=FNAME, STATUS= 'OLD' ,ERR= 199)

READ (NTAPE,185,ERR=199) NDTOTNT

DO 150 I = 1,NDTOT
READ (NTAPE,188,ERR=199) NPROB(I), DEPEND(I)

150 CONTINUE

DO 155 J - 1,N
READ (NTAPE,187,ERR=199)

+ APROB(J),TAIL(J),HEAD(J),ADEPEND(J)
155 CONTINUE
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. .... c .n% . 4 .. . .- o Il . . ..

DO 165 I = 1,T
DO 160 J = 1,N

READ (NTAPE,184,ERR=199) CUT(I,J)
160 CONTINUE
165 CCNTINUE

180 CLOSE (UNIT=NTAPE,ERR=199)

CLEAR CONTROL ARRAY

MUC = 0.
TCNTL = 0
DO 200 I = 1,ND

CONTROL(I) = 0
200 CONTINUE

PRINT*,'CONTROL VARIATES ELIMINATED.'

GO TO 210

* I/O FORMAT STATEMENTS

184 FORMAT (16)
185 FORMAT (316)
186 FORMAT (F8.6)

187 FORMAT (F8.6,I6,I6,I6)
188 FORMAT (F8.6,I4)

* TERMINATION/ERROR CHECK ROUTINES

199 PRINT*,'Error occurred in file transfer.'

GO TO 220

210 PRINT*,'File transfered.'

220 END
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S MONTE CARLO SIMULATION SUBROUTINE

SUBROUTINE SIMULATE

* PARAMETERS

INTEGER ACRW,,M, UPBOUND
PARAMETER (RW= 1000, AC=80 ,ND=50,

+ SM=100000, UPBOUND= 100000)

* GLOBAL VARIABLES

INTEGER NDTOT ,N,T ,TCNTL
INTEGER CUT(RW,AC), DEPEND(ND), ADEPEND(AC)
INTEGER HEAD(AC), TAIL(AC), CONTROL(ND)
REAL NPROB(ND), APROB(AC), MUC
COMMON/CUTI1/NDTOT ,N, T,CUT,*NPROB ,APROB, HEAD, TAIL
COMMON/CUT2/MUC ,TCNTL ,CONTROL
COMMON/CUT3/DEPENDADEPEND

* LOCAL VARIABLES

INTEGER I ,J,K,L,H,CNTL,SIM,ANTI ,MINCUT,FLAG
INTEGER COL(AC), STAT(SM,2), DNODE(ND)
REAL SEED, RDM,VAR,MEAN,RLBL ,CMEAN,
REAL YMEAN ,YVAR, CVAR, COVAR
REAL BHAT,MUY,S11 ,CI1 ,CI2,YTOT,CTOT

* MENU

50 PRINT*,'Enter 0 to continue simulation:'
PRINT*,'Enter 1 to quit:'
READ*, I
IF (I.EQ.1) GO TO 500

PRINT*,'Enter simulation sample size (100k maximum
+allowed).
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READS* SIM
IF (SIM.GT.iO0000) SIM = 100000
IF (SIM.LE.1) SIM = 200

PRINT*,IEnter random seed.'
READ* PEE
IF (SEED.LE.O.) SEED = 44645361.

PRINT*,'Enter 0 for REGULAR random number stream:'
PRINT*,'Enter 1 for ANTITHETIC random number stream:'
READ F ANTI

* CONTROL VARIATE MENU

55 PRINT*,'Enter 0 for no change in control variate:'
PRINT*,'Enter 1 for no (0) control variates:'
PRINT*,'Enter 2 to enter new control variates:'
PRINT*,'NOTE: First simulation run is defaulted to 0

READ*, I
IF (I.EQ.O) THEN

GO TO 75
ELSEIF (I.EQ.1) THEN

GO TO 70
ELSEIF (I.EQ.2) THEN

GO TO 60
ELSE

GO TO 55
END IF

* NEW CONTROL VARIATES

60OMUC = 0.
TCNTL = 0
DO 62 J = 1,NDTOT

CONTROL(J) = 0
62 CONTINUE

63 PRINT*,'Enter 0 for another control variate:'
PRINT*,'Enter 1 to exit:'
READ*, I
IF (I.EQ.O) THEN

GO TO 65
ELSEIF (I.EQ.1) THEN

GO TO 75
ELSE

END IFGO TO 63
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65 PRINT*,'Enter node number:'
READ* J

IF (J.GT.NDTOT) THEN
PRINT*,INODE DOES NOT EXIST!'
GO TO 63

END IF

IF (DEPEND(J).GT.O) THEN
PRINT*, 'NODE IS DEPENDENT ON ANOTHER NODE.'
PRINT*,INELIGIBLE FOR CONTROL SUBSET.'
GO TO 63

END IF

IF (CONTROL(J).EQ.O) THEN
TCNTL = TCNTL +i 1
MUC = MUC + NPROB(J)

END IF
CONTROL(J) = 1
GO TO 63

* CLEAR CONTROL VARIATES

70OMUC = 0.
TCNTL = 0
DO 72 J = 1,NDTOT

CONTROL(J) = 0
72 CONTINUE

* SIMULATION ITERATION

75 DO 200 H = 1,,SIM
CNTL = TCNTL

* CLEAR COL(x) AND DNODE(x) ARRAYS

DO 80 J = 1,N
COL(J) = 0

80 CONTINUE

DO 85 J = 1,NDTOT
DNODE(J) = 0

85 CONTINUE
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* DETERMINE LOSS OF NODES

DO 100 K = 1,NDTOT

DETERMINE IF NODE IS DEPENDENT

IF (DEPEND(K).GT.O) THEN
IF (DNODE(DEPEND(K)).EQ.1) THEN

RDM = 1.1
ELSE

RDM = -. 1
END IF

ELSE
RDM = RANDOM(SEED)
IF (ANTI.EQ.1) RDM = 1. - RDM

END IF

* IDENTIFY LOSS OF NODE FOR OTHER DEPENDENT NODES
* MARK OFF ARCS LOST DUE TO NODE LOSS

IF (RDM.GT.NPROB(K)) THEN
IF (DEPEND(K).EQ.O) DNODE(K) = 1
IF (CONTROL(K).EQ.1) CNTL = CNTL - 1
DO 90 J - 1,N

IF ( (HEAD(J).EQ.K).OR.(TAIL(J).EQ.K)) THEN
COL(J) = 1

END IF
90 CONTINUE

END IF

100 CONTINUE
IF (CNTL.LT.O) CNTL = 0

*

* DETERMINE REMAINING ARCS STATUS

DO 130 J = 1,N
IF ((HEAD(J).NE.TAIL(J)).AND.(COL(J).EQ.0)) THEN

IF (ADEPEND(J).GT.O) THEN
COL(J) = COL(ADEPEND(J))

ELSE
RDM = RANDOM(SEED)
IF (ANTI.EQ.1) RDM = 1. - RDM
IF (RDM.GT.APROB(J)) COL(J) = 1

END IF
END IF

130 CONTINUE
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* CALCULATE MAX-FLOW BY FINDING MIN{MIN-CUT)
* AND STORE IN STAT ARRAY

L = UPBOUND
K= 1

135 IF (K.LE.T) THEN
MINCUT = 0
DO 140 J = 1,N

IF (COL(J).EQ.O) THEN
MINCUT = MINCUT + CUT(KJ)

END IF
140 CONTINUE

IF (MINCUT.LT.L) L = MINCUT
IF (L.EQ.O) K = T
K=K+ 1
GO TO 135

END IF

STAT(Hl) - L
STAT(H,2) = CNTL

200 CONTINUE

* CALCULATE MEAN, STANDARD DEVIATION, AND 95%
* CONFIDENCE INTERVAL FOR NORMAL RESPONSE AND
* CONTROLLED VARIATION RESPONSE

CLEAR VARIABLES

MEAN = 0.
VAR = 0.
RLBL = 0.
YTOT = 0.
CTOT = 0.
YMEAN = 0.
CMEAN = 0.
YVAR = 0.
CVAR = 0.
COVAR = 0.
MUY = 0.
BHAT = 0.
sl = 0.
CIli = 0.
C12 = 0.
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* CALCULATE RESPONSE TOTAL (YTOT) AND MEAN (YMEAN)
* CONTROL TOTAL (CTOT) AND MEAN (CMEAN)
* PERCENTAGE OF RUNS S-T CONNECTED (RLBL)
* (REF: BAUER, PHD DISSERTATION, PURDUE UNIV., 1987)

DO 210 I = 1,SIM
YTOT = YTOT + STAT(I,1)
CTOT = CTOT + STAT(I,2)
IF (STAT(I,1).GT.O) RLBL = RLBL + 1.

210 CONTINUE

YMEAN = YTOT/SIM
CMEAN = CTOT/SIM
RLBL = RLBL/SIM

* CALCULATE VARIANCE OF RESPONSE (YVAR) AND CONTROL
* (CVAR) COVARIANCE OF RESPONSE AND CONTROL (COVAR)

DO 220 I = 1,SIM
YVAR = YVAR + ( (STAT(I,1) - YMEAN)**2 )
CVAR = CVAR + ( (STAT(I,2) - CMEAN)**2 )
COVAR = COVAR+((STAT(I,1)-YMEAN)*(STAT(I,2)-CMEAN))

220 CONTINUE

CALCULATE ESTIMATOR OF BETA (BHAT) - EQ 2.1.9

IF ( (TCNTL.GT.O).AND.(CVAR.GT.O.)) BHAT=COVAR/CVAR

* CALCULATE POINT ESTIMATOR OF MUy (MUY) IN EQ 2.1.10
* USING EQ 2.1.7

MUY = 0.
DO 230 I = 1,SIM

MUY = MUY + STAT(Il) - (BHAT*(STAT(I,2)-MUC)
230 CONTINUE

MUY = MUY/SIM

* CALCULATE VAR OF CONTROL EST. (VAR) - EQ 2.1.18
* USING EST. OF CONTROL RESP. (YHAT) - EQ 2.1.19
* CALCULATE S1 - EQ 2.1.21

S11 = 0.
VAR - 0.

DO 240 I = 1,SIM
YHAT = MUY + BHAT*( STAT(I,2) - MUC
VAR = VAR + ( (STAT(I,1) - YHAT)**2
Sl = $11 + ( (STAT(I,2) - MUC)**2

240 CONTINUE
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VAR =SQRT( VAR/(SIM-2)
IF (CVAR.GT.O.) Sll = SQRT( Sll/(SI'M*CVAR)

* CALCULATE 95% CONFIDENCE INTERVALS
* NO CONTROL VARIATE - (CIl)
*CONTROL VARIATE - (C12)

YVAR = YVAR/(SIM-i)
ClI = i.96*( SQRT(YVAR/,SIM)
C12 = i.96*VAR*Sii

* RESULTS

PRINT*, 'NORMAL STATISTICS'
PRINT*, 'Mean:' ,YMEAN
PRINT*,'Std. Dev.:',SQRT(YVAR)
PRINT*.'Confidence intvl. (+-): ',CIi

PRINT*,'

IF (TCNTL.GT.O) THEN
PRINI 5 , 'CONTROL VARIATE STATISTICS'
PRINTS. 'Mean:' ,MUY
PRINT*,'Std. Dev.:',VAR
PRINT*,'Confidence intvl. (+-):',CI2
PRINT*,'

END IF

PRINT*, 'Reliability:'
PRINT* ,RLBL
PRINT*,,'

PRINT*,'Enter any number to return to menu:'
READ , I
GO TO 50

* END SUBROUTINE

500 END

D- 32



C UTSET MODIFICATION SUBROUTINE

SUBROUTINE CHGCUT

* PARAMETERS

INTEGER AC,RW,ND
PARAMETER (RW=1000,AC80 , ND=50)

*i

* GLOBAL VARIABLES

*

INTEGER NOTOT,N, T, MUC,TCNTL
INTEGER CUT(RWAC)
INTEGER HEAD(AC), TAIL(AC), CONTROL(ND)
REAL NPROB(ND), APROB(AC)
COMMON/CUT 1/NDTOT ,N, T,CUT, NPROB ,APROB, HEAD, TAIL
COMMON/CIT2 /MUC, TCNTL, CONTROL

* LOCAL VARIABLES

INTEGER IDJ,KCAP,HD,TLARCFLAG
REAL PROB
FLAG = 0

* OMENU

* -

50 PRINT*,'Ernter 0 to modify cutset:'
PRINT*,Enter 1 to quit:'
READ*, I
IF (I.EQ.1) GO TO 500

55 PRINT*,'Enter 0 to modify node:'
PRINT*,'Enter 1 to modify arc:'
READ*,K
IF ( (K.LT.O) .OR. (K.GT.1) ) GO TO 55
IF (K.EQ.O) GO TO 60
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* ENTER ARC INFORMATION

PRINT*,'Enter arc head:'
READ*,HD
PRINT*,'Enter arc tail:'
READ*,TL
GO TO 80

* ENTER NODE INFORMATION

60 PRINT*,'Enter node:'
READ*,HD
IF (HD.GT.NDTOT .OR. HD.LT.1) THEN

PRINT*,'ERROR: Node does not exist!'

GO TO 50
END IF
TL = HD

* SEARCH FOR NODE OR ARC

80 ARC = 0
J= 1

85 IF (J.LE.N) THEN
IF ( (HEAD(J).EQ.HD) .AND. (TAIL(J).EQ.TL)) THEN
ARC = J
J=N

END IF
J=J+ 1
GO TO 85

END IF

IF ({K.EQ.1) .AND. (ARC.EQ.0) ) THEN
PRINT*,'ERROR: ARC DOES NOT EXIST!'
GO TO 50

END IF
IF ((K.EQ.0) .AND. (ARC.EQ.0) ) THEN
PRINT*,'WARNING: This is a non-capacitated node..'
PRINT*,'Algorithm does not allow this node to

+ change capacity.'
PRINT*,'Only survival probability parameter may be

+ changed.'
CAP = 1
GO TO 90

END IF
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* ENTER CAPACITY AND PROBABILITY CHANGE

PRINT*,'Enter new capacity:'
READ*,CAP

90 PRINT*,'Enter new probability:'
READ*,PROB

IF (PROB.LT.O.) PROB = 0.
IF (PROB.GT.I.) PROB = 1.
IF (CAP.LT.1) CAP = 1

IF ( (K.EQ.1) .AND. (CAP.LE.O) ) THEN
CAP = 1
PROB = 0.

END IF

* CHANGE APPPOPRIATE COLUMN IN CUTSET MATRIX

ARCS AND NODES

IF (ARC.GT.O) THEN
DO 100 I = 1,T

IF (CUT(I,ARC).GT.O) CUT(I,ARC) = CAP
100 CONTINUE

APROB(ARC) = PROB
END IF

NODE ONLY

IF (K.EQ.O) THEN
NPROB(HD) = PROB
FLAG = 1

END IF
GO TO 50

*

* TERMINATE ROUTINE

500 IF (FLAG.EQ.1) THEN
MUC = 0.
TCNTL = 0
DO 510 I = 1,NDTOT

CONTROL(I) = 0
510 CONTINUE

PRINT*,'WARNING: CONTROL VARIATES ELIMINATED'
END IF
END
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* DEPENDENT ARC AND NODE SUBROUTINE

SUBROUTINE DPND

* PARAMETERS

INTEGER RW,ND,AC
PARAMETER (RW=1000 ,ND=50 ,AC=80)

* GLOBAL VARIABLES

INTEGER NDTOT,NT
INTEGER CUT(RW,AC)
INTrGER HEAD(AC), TAIL(AC)
REAL NPROB(ND), APROB(AC)
INTEGER DEPEND (ND), ADEPEND (AC)
COMMON/CUT 1/NDTOT, N, T,CUT, NPROB ,APROB,HEDTAIL
COMMON/CUT 3/DEPEND, ADEPEND

* LOCAL VARIABLES

INTEGER I,J,K,HD,TL

* MENU

5 PRINTS, '0. Enter dependent nodes.'
PRINT*,11. Enter dependent arcs.'
FRlNT*,12. Return to main menu.'
PRINT*.I3. Clear dependent nodes (ALL nodes

PRINT*, '9. Clear dependent arcs (ALL arcs
+independent).
READ* ,I
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IF (I.EQ.O) THEN
GO TO 10

ELSE IF (I.EQ.8) THEN
GO TO 80

ELSE IF (I.EQ.1) THEN
GO TO 200

ELSE IF (I.EQ.9) THEN
GO TO 300

ELSE IF (I.EQ.2) THEN
GO TO 500

ELSE
GO TO 5

END IF

* NODE DEPENDENCY ENTRY ROUTINE

10 K = 0
15 PRINT*,'Enter dependent node number or 0 to quit.'

READ*,I

IF (I.GT.NDTOT .OR. I.LT.0) THEN
PRINT*,'NODE DOES NOT EXIST.'
GO TO 15

END IF
IF (I.EQ.0) GO TO 30 4

DEPEND(I) = -1
K=K+s

GO TO 15

30 IF (K.LE.1) THEN
PRINT*,'MUST ENTER A MINIMUM OF TWO NODES.'
GO TO 5

END IF

* IDENTIFY LOWEST NODE IN DEPENDENCY SET
* AND SET DEPENDENT NODES TO THAT NODE NUMBER

J=0
1=1

45 IF (I.LE.NDTOT) THEN
IF (DEPEND(I).EQ.-1) THEN

J I
I = NDTOT

END IF
I=I+1
GO TO 45

END IF
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DEPEND(J) = 0
DO 60 I = 1,NDTOT

IF (DEPEND(I).EQ.-1) DEPEND(I) = 7
60 CONTINUE

PRINT*,'IMPORTANT: The following node is the KEY
+node.',J
PRINT*,'The parameters for this node apply to the

+dependency set.'
GO TO 5

* SET ALL NODES INDEPENDENT

80 DO 85 I = 1,ND
DEPEND(I) = 0

85 CONTINUE

PRINT*,'NOTICE: All nodes are now INDEPENDENT.'
GO TO 5

* ARC DEPENDENCY ENTRY ROUTINE

200 K = 0
215 PRINT*,'Enter 0 to enter dependent arc:'

PRINT*,'Enter 1 when finished:'
READ*,I

IF (I.EQ.O) GO TO 220
IF (I.EQ.1) GO TO 240
GO TO 215

220 PRINT*,'Enter arc head:'
READ*,HD
PRINT*,'Enter arc tail:'
READ*,TL

I=1
j=0

230 IF (I.LE.N) THEN
IF (HEAD(I).EQ.HD .AND. TAIL(I).EQ.TL) THEN

J= I
I =N

END IF
I=I+1
GO TO 230

END IF
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IF (J.EQ.O) THEN
PRINT*,IARC DOES NOT EXIST.'
GO TO 215

END IF

ADEPEND(J) = -1
K=K+ 1
GO TO 215

240 IF (K.LE.1) THEN
PRINT*,'MUST ENTER A MINIMUM OF TWO ARCS.'
GO TO 5

END IF

* IDENTIFY LOWEST ARC IN DEPENDENCY SET

* AND SET DEPENDENT ARCS TO THAT NODE NUMBER
*

j= 0
1=1

245 IF (I.LE.N) THEN
IF (ADEPEND(I).EQ.-1) THEN

J= I
I =N

END IF
I=I+1
GO TO 245

END IF

ADEPEND(J) = 0
DO 260 I = 1,N

IF (ADEPEND(I).EQ.-l) ADEPEND(I) J
260 CONTINUE

PRINT*,IMPORTANT: The following arc is the KEY arc.'
PRINT*,'HEAD:',HEAD(J)
PRINT*,'TAIL:',TAIL(J)
PRINT*,'The parameters for this arc apply to the

+dependency set.'
GO TO 5

*

* SET ALL ARCS INDEPENDENT*

300 DO 385 I = 1,AC
ADEPEND(I) = 0

385 CONTINUE

PRINT*,'NOTICE: All arcs are now INDEPENDENT.'
GO TO 5
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* TERMINATE ROUTINE

500 END
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